// ChunkDef.h
// Interfaces to helper types for chunk definitions. Most modules want to include this instead of cChunk.h
#pragma once
#include "Vector3.h"
#include "BiomeDef.h"
// Used to smoothly convert to new axis ordering. One will be removed when deemed stable.
#define AXIS_ORDER_YZX 1 // Original (1.1-)
#define AXIS_ORDER_XZY 2 // New (1.2+)
#define AXIS_ORDER AXIS_ORDER_XZY
// fwd
class cBlockEntity;
class cEntity;
class cClientHandle;
class cBlockEntity;
typedef std::list<cEntity *> cEntityList;
typedef std::list<cBlockEntity *> cBlockEntityList;
// tolua_begin
/** The datatype used by blockdata */
typedef unsigned char BLOCKTYPE;
/** The datatype used by nibbledata (meta, light, skylight) */
typedef unsigned char NIBBLETYPE;
/** The type used by the heightmap */
typedef unsigned char HEIGHTTYPE;
// tolua_end
class cChunkCoords
{
public:
int m_ChunkX;
int m_ChunkZ;
cChunkCoords(int a_ChunkX, int a_ChunkZ) : m_ChunkX(a_ChunkX), m_ChunkZ(a_ChunkZ) {}
bool operator == (const cChunkCoords & a_Other) const
{
return ((m_ChunkX == a_Other.m_ChunkX) && (m_ChunkZ == a_Other.m_ChunkZ));
}
bool operator != (const cChunkCoords & a_Other) const
{
return !operator == (a_Other);
}
};
typedef std::vector<cChunkCoords> cChunkCoordsVector;
/** Constants used throughout the code, useful typedefs and utility functions */
class cChunkDef
{
public:
// Chunk dimensions:
static const int Width = 16;
static const int Height = 256;
static const int NumBlocks = Width * Height * Width;
/** If the data is collected into a single buffer, how large it needs to be: */
static const int BlockDataSize = cChunkDef::NumBlocks * 2 + (cChunkDef::NumBlocks / 2); // 2.5 * numblocks
/** The type used for any heightmap operations and storage; idx = x + Width * z; Height points to the highest non-air block in the column */
typedef HEIGHTTYPE HeightMap[Width * Width];
/** The type used for any biomemap operations and storage inside Cuberite,
using Cuberite biomes (need not correspond to client representation!)
idx = x + Width * z */
typedef EMCSBiome BiomeMap[Width * Width];
/** The type used for block type operations and storage, AXIS_ORDER ordering */
typedef BLOCKTYPE BlockTypes[NumBlocks];
/** The type used for block data in nibble format, AXIS_ORDER ordering */
typedef NIBBLETYPE BlockNibbles[NumBlocks / 2];
/** The storage wrapper used for compressed blockdata residing in RAMz */
typedef std::vector<BLOCKTYPE> COMPRESSED_BLOCKTYPE;
/** The storage wrapper used for compressed nibbledata residing in RAMz */
typedef std::vector<NIBBLETYPE> COMPRESSED_NIBBLETYPE;
/** Converts absolute block coords into relative (chunk + block) coords: */
inline static void AbsoluteToRelative(/* in-out */ int & a_X, int & a_Y, int & a_Z, /* out */ int & a_ChunkX, int & a_ChunkZ)
{
UNUSED(a_Y);
BlockToChunk(a_X, a_Z, a_ChunkX, a_ChunkZ);
a_X = a_X - a_ChunkX * Width;
a_Z = a_Z - a_ChunkZ * Width;
}
inline static Vector3i AbsoluteToRelative(Vector3i a_BlockPosition)
{
int ChunkX, ChunkZ;
BlockToChunk(a_BlockPosition.x, a_BlockPosition.z, ChunkX, ChunkZ);
return {a_BlockPosition.x - ChunkX * Width, a_BlockPosition.y, a_BlockPosition.z - ChunkZ * Width};
}
inline static Vector3i AbsoluteToRelative(Vector3i a_BlockPosition, int a_ChunkX, int a_ChunkZ)
{
return {a_BlockPosition.x - a_ChunkX * Width, a_BlockPosition.y, a_BlockPosition.z - a_ChunkZ * Width};
}
/** Converts relative block coordinates into absolute coordinates with a known chunk location */
inline static Vector3i RelativeToAbsolute(const Vector3i & a_RelBlockPosition, int a_ChunkX, int a_ChunkZ)
{
return Vector3i(a_RelBlockPosition.x + a_ChunkX * Width, a_RelBlockPosition.y, a_RelBlockPosition.z + a_ChunkZ * Width);
}
/** Validates a height-coordinate. Returns false if height-coordiante is out of height bounds */
inline static bool IsValidHeight(int a_Height)
{
return ((a_Height >= 0) && (a_Height < Height));
}
/** Validates a width-coordinate. Returns false if width-coordiante is out of width bounds */
inline static bool IsValidWidth(int a_Width)
{
return ((a_Width >= 0) && (a_Width < Width));
}
/** Converts absolute block coords to chunk coords: */
inline static void BlockToChunk(int a_X, int a_Z, int & a_ChunkX, int & a_ChunkZ)
{
a_ChunkX = a_X / Width;
if ((a_X < 0) && (a_X % Width != 0))
{
a_ChunkX--;
}
a_ChunkZ = a_Z / cChunkDef::Width;
if ((a_Z < 0) && (a_Z % Width != 0))
{
a_ChunkZ--;
}
}
/** Converts absolute block coords to chunk coords. */
inline static cChunkCoords BlockToChunk(const Vector3i & a_Position)
{
return { FloorC(a_Position.x / cChunkDef::Width), FloorC(a_Position.x / cChunkDef::Width) };
}
inline static int MakeIndex(int x, int y, int z)
{
if (
(x < Width) && (x > -1) &&
(y < Height) && (y > -1) &&
(z < Width) && (z > -1)
)
{
return MakeIndexNoCheck(x, y, z);
}
LOGERROR("cChunkDef::MakeIndex(): coords out of range: {%d, %d, %d}; returning fake index 0", x, y, z);
ASSERT(!"cChunkDef::MakeIndex(): coords out of chunk range!");
return 0;
}
inline static int MakeIndexNoCheck(int x, int y, int z)
{
#if AXIS_ORDER == AXIS_ORDER_XZY
// For some reason, NOT using the Horner schema is faster. Weird.
return x + (z * cChunkDef::Width) + (y * cChunkDef::Width * cChunkDef::Width); // 1.2 uses XZY
#elif AXIS_ORDER == AXIS_ORDER_YZX
return y + (z * cChunkDef::Width) + (x * cChunkDef::Height * cChunkDef::Width); // 1.1 uses YZX
#endif
}
inline static Vector3i IndexToCoordinate( unsigned int index)
{
#if AXIS_ORDER == AXIS_ORDER_XZY
return Vector3i( // 1.2
index % cChunkDef::Width, // X
index / (cChunkDef::Width * cChunkDef::Width), // Y
(index / cChunkDef::Width) % cChunkDef::Width // Z
);
#elif AXIS_ORDER == AXIS_ORDER_YZX
return Vector3i( // 1.1
index / (cChunkDef::Height * cChunkDef::Width), // X
index % cChunkDef::Height, // Y
(index / cChunkDef::Height) % cChunkDef::Width // Z
);
#endif
}
inline static void SetBlock(BLOCKTYPE * a_BlockTypes, int a_X, int a_Y, int a_Z, BLOCKTYPE a_Type)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Y >= 0) && (a_Y < Height));
ASSERT((a_Z >= 0) && (a_Z < Width));
a_BlockTypes[MakeIndexNoCheck(a_X, a_Y, a_Z)] = a_Type;
}
inline static void SetBlock(BLOCKTYPE * a_BlockTypes, int a_Index, BLOCKTYPE a_Type)
{
ASSERT((a_Index >= 0) && (a_Index <= NumBlocks));
a_BlockTypes[a_Index] = a_Type;
}
inline static BLOCKTYPE GetBlock(const BLOCKTYPE * a_BlockTypes, int a_X, int a_Y, int a_Z)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Y >= 0) && (a_Y < Height));
ASSERT((a_Z >= 0) && (a_Z < Width));
return a_BlockTypes[MakeIndexNoCheck(a_X, a_Y, a_Z)];
}
inline static BLOCKTYPE GetBlock(const BLOCKTYPE * a_BlockTypes, int a_Idx)
{
ASSERT((a_Idx >= 0) && (a_Idx < NumBlocks));
return a_BlockTypes[a_Idx];
}
inline static HEIGHTTYPE GetHeight(const HeightMap & a_HeightMap, int a_X, int a_Z)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Z >= 0) && (a_Z < Width));
return a_HeightMap[a_X + Width * a_Z];
}
inline static void SetHeight(HeightMap & a_HeightMap, int a_X, int a_Z, HEIGHTTYPE a_Height)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Z >= 0) && (a_Z < Width));
a_HeightMap[a_X + Width * a_Z] = a_Height;
}
inline static EMCSBiome GetBiome(const BiomeMap & a_BiomeMap, int a_X, int a_Z)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Z >= 0) && (a_Z < Width));
return a_BiomeMap[a_X + Width * a_Z];
}
inline static void SetBiome(BiomeMap & a_BiomeMap, int a_X, int a_Z, EMCSBiome a_Biome)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Z >= 0) && (a_Z < Width));
a_BiomeMap[a_X + Width * a_Z] = a_Biome;
}
static NIBBLETYPE GetNibble(const COMPRESSED_NIBBLETYPE & a_Buffer, int a_BlockIdx, bool a_IsSkyLightNibble = false)
{
if ((a_BlockIdx > -1) && (a_BlockIdx < NumBlocks))
{
if (static_cast<size_t>(a_BlockIdx / 2) >= a_Buffer.size())
{
return (a_IsSkyLightNibble ? 0xff : 0);
}
return (a_Buffer[static_cast<size_t>(a_BlockIdx / 2)] >> ((a_BlockIdx & 1) * 4)) & 0x0f;
}
ASSERT(!"cChunkDef::GetNibble(): index out of chunk range!");
return 0;
}
static NIBBLETYPE GetNibble(const COMPRESSED_NIBBLETYPE & a_Buffer, int x, int y, int z, bool a_IsSkyLightNibble = false)
{
if ((x < Width) && (x > -1) && (y < Height) && (y > -1) && (z < Width) && (z > -1))
{
size_t Index = static_cast<size_t>(MakeIndexNoCheck(x, y, z));
if ((Index / 2) >= a_Buffer.size())
{
return (a_IsSkyLightNibble ? 0xff : 0);
}
return ExpandNibble(a_Buffer, Index);
}
ASSERT(!"cChunkDef::GetNibble(): coords out of chunk range!");
return 0;
}
static NIBBLETYPE GetNibble(const NIBBLETYPE * a_Buffer, int x, int y, int z)
{
if ((x < Width) && (x > -1) && (y < Height) && (y > -1) && (z < Width) && (z > -1))
{
int Index = MakeIndexNoCheck(x, y, z);
return (a_Buffer[static_cast<size_t>(Index / 2)] >> ((Index & 1) * 4)) & 0x0f;
}
ASSERT(!"cChunkDef::GetNibble(): coords out of chunk range!");
return 0;
}
static void SetNibble(COMPRESSED_NIBBLETYPE & a_Buffer, int a_BlockIdx, NIBBLETYPE a_Nibble)
{
if ((a_BlockIdx < 0) || (a_BlockIdx >= NumBlocks))
{
ASSERT(!"cChunkDef::SetNibble(): index out of range!");
return;
}
if (static_cast<size_t>(a_BlockIdx / 2) >= a_Buffer.size())
{
a_Buffer.resize(static_cast<size_t>((a_BlockIdx / 2) + 1));
}
a_Buffer[static_cast<size_t>(a_BlockIdx / 2)] = PackNibble(a_Buffer, static_cast<size_t>(a_BlockIdx), a_Nibble);
}
static void SetNibble(COMPRESSED_NIBBLETYPE & a_Buffer, int x, int y, int z, NIBBLETYPE a_Nibble)
{
if (
(x >= Width) || (x < 0) ||
(y >= Height) || (y < 0) ||
(z >= Width) || (z < 0)
)
{
ASSERT(!"cChunkDef::SetNibble(): index out of range!");
return;
}
size_t Index = static_cast<size_t>(MakeIndexNoCheck(x, y, z));
if ((Index / 2) >= a_Buffer.size())
{
a_Buffer.resize(((Index / 2) + 1));
}
a_Buffer[(Index / 2)] = PackNibble(a_Buffer, Index, a_Nibble);
}
private:
inline static NIBBLETYPE PackNibble(const COMPRESSED_NIBBLETYPE & a_Buffer, size_t a_Index, NIBBLETYPE a_Nibble)
{
return static_cast<NIBBLETYPE>(
(a_Buffer[a_Index / 2] & (0xf0 >> ((a_Index & 1) * 4))) | // The untouched nibble
((a_Nibble & 0x0f) << ((a_Index & 1) * 4)) // The nibble being set
);
}
inline static NIBBLETYPE ExpandNibble(const COMPRESSED_NIBBLETYPE & a_Buffer, size_t a_Index)
{
return (a_Buffer[a_Index / 2] >> ((a_Index & 1) * 4)) & 0x0f;
}
} ;
/** Interface class used for comparing clients of two chunks.
Used primarily for entity moving while both chunks are locked. */
class cClientDiffCallback
{
public:
virtual ~cClientDiffCallback() {}
/** Called for clients that are in Chunk1 and not in Chunk2, */
virtual void Removed(cClientHandle * a_Client) = 0;
/** Called for clients that are in Chunk2 and not in Chunk1. */
virtual void Added(cClientHandle * a_Client) = 0;
} ;
struct sSetBlock
{
int m_RelX, m_RelY, m_RelZ;
int m_ChunkX, m_ChunkZ;
BLOCKTYPE m_BlockType;
NIBBLETYPE m_BlockMeta;
sSetBlock(int a_BlockX, int a_BlockY, int a_BlockZ, BLOCKTYPE a_BlockType, NIBBLETYPE a_BlockMeta);
sSetBlock(int a_ChunkX, int a_ChunkZ, int a_RelX, int a_RelY, int a_RelZ, BLOCKTYPE a_BlockType, NIBBLETYPE a_BlockMeta) :
m_RelX(a_RelX), m_RelY(a_RelY), m_RelZ(a_RelZ),
m_ChunkX(a_ChunkX), m_ChunkZ(a_ChunkZ),
m_BlockType(a_BlockType),
m_BlockMeta(a_BlockMeta)
{
ASSERT((a_RelX >= 0) && (a_RelX < cChunkDef::Width));
ASSERT((a_RelZ >= 0) && (a_RelZ < cChunkDef::Width));
}
/** Returns the absolute X coord of the stored block. */
int GetX(void) const { return m_RelX + cChunkDef::Width * m_ChunkX; }
/** Returns the absolute Y coord of the stored block.
Is the same as relative Y coords, because there's no Y relativization. */
int GetY(void) const { return m_RelY; }
/** Returns the absolute Z coord of the stored block. */
int GetZ(void) const { return m_RelZ + cChunkDef::Width * m_ChunkZ; }
};
typedef std::list<sSetBlock> sSetBlockList;
typedef std::vector<sSetBlock> sSetBlockVector;
/** A simple hash function for chunk coords, we assume that chunk coords won't use more than 16 bits, so the hash is almost an identity.
Used for std::unordered_map<cChunkCoords, ...> */
class cChunkCoordsHash
{
public:
size_t operator () (const cChunkCoords & a_Coords) const
{
return (static_cast<size_t>(a_Coords.m_ChunkX) << 16) ^ static_cast<size_t>(a_Coords.m_ChunkZ);
}
};
class cChunkCoordsWithBool
{
public:
int m_ChunkX;
int m_ChunkZ;
bool m_ForceGenerate;
cChunkCoordsWithBool(int a_ChunkX, int a_ChunkZ, bool a_ForceGenerate) : m_ChunkX(a_ChunkX), m_ChunkZ(a_ChunkZ), m_ForceGenerate(a_ForceGenerate){}
bool operator == (const cChunkCoordsWithBool & a_Other) const
{
return ((m_ChunkX == a_Other.m_ChunkX) && (m_ChunkZ == a_Other.m_ChunkZ) && (m_ForceGenerate == a_Other.m_ForceGenerate));
}
};
typedef std::list<cChunkCoordsWithBool> cChunkCoordsWithBoolList;
/** Interface class used as a callback for operations that involve chunk coords */
class cChunkCoordCallback
{
public:
virtual ~cChunkCoordCallback() {}
/** Called with the chunk's coords, and an optional operation status flag for operations that support it. */
virtual void Call(int a_ChunkX, int a_ChunkZ, bool a_IsSuccess) = 0;
} ;
/** Provides storage for a set of chunk coords together with a callback.
Used for chunk queues that notify about processed items. */
class cChunkCoordsWithCallback
{
public:
cChunkCoordsWithCallback(int a_ChunkX, int a_ChunkZ, cChunkCoordCallback * a_Callback):
m_ChunkX(a_ChunkX),
m_ChunkZ(a_ChunkZ),
m_Callback(a_Callback)
{
}
int m_ChunkX;
int m_ChunkZ;
cChunkCoordCallback * m_Callback;
};
/** Generic template that can store any kind of data together with a triplet of 3 coords */
template <typename X> class cCoordWithData
{
public:
int x;
int y;
int z;
X Data;
cCoordWithData(int a_X, int a_Y, int a_Z) :
x(a_X), y(a_Y), z(a_Z), Data()
{
}
cCoordWithData(int a_X, int a_Y, int a_Z, const X & a_Data) :
x(a_X), y(a_Y), z(a_Z), Data(a_Data)
{
}
} ;
typedef cCoordWithData<int> cCoordWithInt;
typedef cCoordWithData<BLOCKTYPE> cCoordWithBlock;
typedef std::list<cCoordWithInt> cCoordWithIntList;
typedef std::vector<cCoordWithInt> cCoordWithIntVector;