#pragma once
#include <math.h>
template <typename T>
// tolua_begin
class Matrix4
{
TOLUA_TEMPLATE_BIND((T, float, double))
// tolua_end
public:
T cell[16];
enum
{
TX=3, TY=7, TZ=11,
D0=0, D1=5, D2=10, D3=15,
SX=D0, SY=D1, SZ=D2,
W=D3
};
// tolua_begin
inline Matrix4(void)
{
Identity();
}
inline Matrix4(const Matrix4 & a_Rhs)
{
*this = a_Rhs;
}
inline Matrix4 & operator = (const Matrix4 & a_Rhs)
{
for (unsigned int i = 0; i < 16; ++i)
{
cell[i] = a_Rhs.cell[i];
}
return *this;
}
inline T & operator [] (int a_N)
{
ASSERT(a_N < 16);
return cell[a_N];
}
inline void Identity()
{
cell[1] = cell[2] = cell[TX] = cell[4] = cell[6] = cell[TY] =
cell[8] = cell[9] = cell[TZ] = cell[12] = cell[13] = cell[14] = 0;
cell[D0] = cell[D1] = cell[D2] = cell[W] = 1;
}
inline void Init(const Vector3<T> & a_Pos, T a_RX, T a_RY, T a_RZ)
{
Matrix4<T> t;
t.RotateX(a_RZ);
RotateY(a_RY);
Concatenate(t);
t.RotateZ(a_RX);
Concatenate(t);
Translate(a_Pos);
}
inline void RotateX(T a_RX)
{
T sx = (T) sin(a_RX * M_PI / 180);
T cx = (T) cos(a_RX * M_PI / 180);
Identity();
cell[5] = cx, cell[6] = sx, cell[9] = -sx, cell[10] = cx;
}
inline void RotateY(T a_RY)
{
T sy = (T) sin(a_RY * M_PI / 180);
T cy = (T) cos(a_RY * M_PI / 180);
Identity();
cell[0] = cy, cell[2] = -sy, cell[8] = sy, cell[10] = cy;
}
inline void RotateZ(T a_RZ)
{
T sz = (T) sin(a_RZ * M_PI / 180);
T cz = (T) cos(a_RZ * M_PI / 180);
Identity();
cell[0] = cz; cell[1] = sz;
cell[4] = -sz; cell[5] = cz;
}
inline void Translate(const Vector3<T> & a_Pos)
{
cell[TX] += a_Pos.x;
cell[TY] += a_Pos.y;
cell[TZ] += a_Pos.z;
}
inline void SetTranslation(const Vector3<T> & a_Pos)
{
cell[TX] = a_Pos.x;
cell[TY] = a_Pos.y;
cell[TZ] = a_Pos.z;
}
inline void Concatenate(const Matrix4 & m2)
{
Matrix4 res;
for (unsigned int c = 0; c < 4; ++c)
{
for (unsigned int r = 0; r < 4; ++r)
{
res.cell[r * 4 + c] = (
cell[r * 4] * m2.cell[c] +
cell[r * 4 + 1] * m2.cell[c + 4] +
cell[r * 4 + 2] * m2.cell[c + 8] +
cell[r * 4 + 3] * m2.cell[c + 12]
);
}
}
*this = res;
}
inline Vector3<T> Transform(const Vector3<T> & v) const
{
T x = cell[0] * v.x + cell[1] * v.y + cell[2] * v.z + cell[3];
T y = cell[4] * v.x + cell[5] * v.y + cell[6] * v.z + cell[7];
T z = cell[8] * v.x + cell[9] * v.y + cell[10] * v.z + cell[11];
return Vector3<T>(x, y, z);
}
inline void Invert(void)
{
Matrix4 t;
T tx = -cell[3];
T ty = -cell[7];
T tz = -cell[11];
for (unsigned int h = 0; h < 3; ++h)
{
for (unsigned int v = 0; v < 3; ++v)
{
t.cell[h + v * 4] = cell[v + h * 4];
}
}
for (unsigned int i = 0; i < 11; ++i)
{
cell[i] = t.cell[i];
}
cell[3] = tx * cell[0] + ty * cell[1] + tz * cell[2];
cell[7] = tx * cell[4] + ty * cell[5] + tz * cell[6];
cell[11] = tx * cell[8] + ty * cell[9] + tz * cell[10];
}
inline Vector3<T> GetXColumn(void) const
{
return Vector3<T>(cell[0], cell[1], cell[2]);
}
inline Vector3<T> GetYColumn(void) const
{
return Vector3<T>(cell[4], cell[5], cell[6]);
}
inline Vector3<T> GetZColumn(void) const
{
return Vector3<T>(cell[8], cell[9], cell[10]);
}
inline void SetXColumn(const Vector3<T> & a_X)
{
cell[0] = a_X.x;
cell[1] = a_X.y;
cell[2] = a_X.z;
}
inline void SetYColumn(const Vector3<T> & a_Y)
{
cell[4] = a_Y.x;
cell[5] = a_Y.y;
cell[6] = a_Y.z;
}
inline void SetZColumn(const Vector3<T> & a_Z)
{
cell[8] = a_Z.x;
cell[9] = a_Z.y;
cell[10] = a_Z.z;
}
};
// tolua_end
// tolua_begin
typedef Matrix4<double> Matrix4d;
typedef Matrix4<float> Matrix4f;
// tolua_end