From 561f10539494ce6cba62d58dab2a6686e04c760b Mon Sep 17 00:00:00 2001 From: "madmaxoft@gmail.com" Date: Sat, 23 Mar 2013 20:53:08 +0000 Subject: CryptoPP: Pruned unused files git-svn-id: http://mc-server.googlecode.com/svn/trunk@1304 0a769ca7-a7f5-676a-18bf-c427514a06d6 --- CryptoPP/xtr.cpp | 100 ------------------------------------------------------- 1 file changed, 100 deletions(-) delete mode 100644 CryptoPP/xtr.cpp (limited to 'CryptoPP/xtr.cpp') diff --git a/CryptoPP/xtr.cpp b/CryptoPP/xtr.cpp deleted file mode 100644 index 673907054..000000000 --- a/CryptoPP/xtr.cpp +++ /dev/null @@ -1,100 +0,0 @@ -// cryptlib.cpp - written and placed in the public domain by Wei Dai - -#include "pch.h" -#include "xtr.h" -#include "nbtheory.h" - -#include "algebra.cpp" - -NAMESPACE_BEGIN(CryptoPP) - -const GFP2Element & GFP2Element::Zero() -{ - return Singleton().Ref(); -} - -void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits) -{ - assert(qbits > 9); // no primes exist for pbits = 10, qbits = 9 - assert(pbits > qbits); - - const Integer minQ = Integer::Power2(qbits - 1); - const Integer maxQ = Integer::Power2(qbits) - 1; - const Integer minP = Integer::Power2(pbits - 1); - const Integer maxP = Integer::Power2(pbits) - 1; - - Integer r1, r2; - do - { - bool qFound = q.Randomize(rng, minQ, maxQ, Integer::PRIME, 7, 12); - assert(qFound); - bool solutionsExist = SolveModularQuadraticEquation(r1, r2, 1, -1, 1, q); - assert(solutionsExist); - } while (!p.Randomize(rng, minP, maxP, Integer::PRIME, CRT(rng.GenerateBit()?r1:r2, q, 2, 3, EuclideanMultiplicativeInverse(p, 3)), 3*q)); - assert(((p.Squared() - p + 1) % q).IsZero()); - - GFP2_ONB gfp2(p); - GFP2Element three = gfp2.ConvertIn(3), t; - - while (true) - { - g.c1.Randomize(rng, Integer::Zero(), p-1); - g.c2.Randomize(rng, Integer::Zero(), p-1); - t = XTR_Exponentiate(g, p+1, p); - if (t.c1 == t.c2) - continue; - g = XTR_Exponentiate(g, (p.Squared()-p+1)/q, p); - if (g != three) - break; - } - assert(XTR_Exponentiate(g, q, p) == three); -} - -GFP2Element XTR_Exponentiate(const GFP2Element &b, const Integer &e, const Integer &p) -{ - unsigned int bitCount = e.BitCount(); - if (bitCount == 0) - return GFP2Element(-3, -3); - - // find the lowest bit of e that is 1 - unsigned int lowest1bit; - for (lowest1bit=0; e.GetBit(lowest1bit) == 0; lowest1bit++) {} - - GFP2_ONB gfp2(p); - GFP2Element c = gfp2.ConvertIn(b); - GFP2Element cp = gfp2.PthPower(c); - GFP2Element S[5] = {gfp2.ConvertIn(3), c, gfp2.SpecialOperation1(c)}; - - // do all exponents bits except the lowest zeros starting from the top - unsigned int i; - for (i = e.BitCount() - 1; i>lowest1bit; i--) - { - if (e.GetBit(i)) - { - gfp2.RaiseToPthPower(S[0]); - gfp2.Accumulate(S[0], gfp2.SpecialOperation2(S[2], c, S[1])); - S[1] = gfp2.SpecialOperation1(S[1]); - S[2] = gfp2.SpecialOperation1(S[2]); - S[0].swap(S[1]); - } - else - { - gfp2.RaiseToPthPower(S[2]); - gfp2.Accumulate(S[2], gfp2.SpecialOperation2(S[0], cp, S[1])); - S[1] = gfp2.SpecialOperation1(S[1]); - S[0] = gfp2.SpecialOperation1(S[0]); - S[2].swap(S[1]); - } - } - - // now do the lowest zeros - while (i--) - S[1] = gfp2.SpecialOperation1(S[1]); - - return gfp2.ConvertOut(S[1]); -} - -template class AbstractRing; -template class AbstractGroup; - -NAMESPACE_END -- cgit v1.2.3