#pragma once template // tolua_begin class Vector3 { TOLUA_TEMPLATE_BIND((T, int, float, double)) public: T x, y, z; constexpr Vector3(void) : x(0), y(0), z(0) {} constexpr Vector3(T a_x, T a_y, T a_z) : x(a_x), y(a_y), z(a_z) {} #ifdef TOLUA_EXPOSITION // Hardcoded copy constructors (tolua++ does not support function templates .. yet) Vector3(const Vector3 & a_Rhs); Vector3(const Vector3 & a_Rhs); Vector3(const Vector3 & a_Rhs); #endif // tolua_end // Conversion constructors where U is not the same as T leaving the copy-constructor implicitly generated template ::value) && ((!std::is_integral::value) || (std::is_integral::value)), bool> = true> constexpr Vector3(const Vector3 & a_Rhs): x(static_cast(a_Rhs.x)), y(static_cast(a_Rhs.y)), z(static_cast(a_Rhs.z)) { } template ::value) && ((std::is_integral::value) && (!std::is_integral::value)), bool> = true> constexpr Vector3(const Vector3 & a_Rhs): x(static_cast(std::floor(a_Rhs.x))), y(static_cast(std::floor(a_Rhs.y))), z(static_cast(std::floor(a_Rhs.z))) { } // tolua_begin inline void Set(T a_x, T a_y, T a_z) { x = a_x; y = a_y; z = a_z; } inline void Normalize(void) { double Len = 1.0 / Length(); x = static_cast(x * Len); y = static_cast(y * Len); z = static_cast(z * Len); } inline Vector3 NormalizeCopy(void) const { double Len = 1.0 / Length(); return Vector3( static_cast(x * Len), static_cast(y * Len), static_cast(z * Len) ); } // tolua_end /** Sets the given vector to the normalized version of this vector. Removed from LuaAPI, because Lua doesn't need distinguishing from the other overload. */ inline void NormalizeCopy(Vector3 & a_Rhs) const { double Len = 1.0 / Length(); a_Rhs.Set( static_cast(x * Len), static_cast(y * Len), static_cast(z * Len) ); } // tolua_begin inline bool HasNonZeroLength(void) const { #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wfloat-equal" #endif return ((x != 0) || (y != 0) || (z != 0)); #ifdef __clang__ #pragma clang diagnostic pop #endif } inline double Length(void) const { return sqrt(static_cast(x * x + y * y + z * z)); } inline double SqrLength(void) const { return x * x + y * y + z * z; } inline T Dot(const Vector3 & a_Rhs) const { return x * a_Rhs.x + y * a_Rhs.y + z * a_Rhs.z; } /** Updates each coord to its absolute value */ inline void Abs() { x = std::abs(x); y = std::abs(y); z = std::abs(z); } /** Clamps each coord into the specified range. */ inline void Clamp(T a_Min, T a_Max) { x = ::Clamp(x, a_Min, a_Max); y = ::Clamp(y, a_Min, a_Max); z = ::Clamp(z, a_Min, a_Max); } inline Vector3 Cross(const Vector3 & a_Rhs) const { return Vector3( y * a_Rhs.z - z * a_Rhs.y, z * a_Rhs.x - x * a_Rhs.z, x * a_Rhs.y - y * a_Rhs.x ); } inline bool Equals(const Vector3 & a_Rhs) const { // Perform a strict comparison of the contents - we want to know whether this object is exactly equal // To perform EPS-based comparison, use the EqualsEps() function #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wfloat-equal" #endif return !((x != a_Rhs.x) || (y != a_Rhs.y) || (z != a_Rhs.z)); #ifdef __clang__ #pragma clang diagnostic pop #endif } inline bool EqualsEps(const Vector3 & a_Rhs, T a_Eps) const { return (std::abs(x - a_Rhs.x) < a_Eps) && (std::abs(y - a_Rhs.y) < a_Eps) && (std::abs(z - a_Rhs.z) < a_Eps); } inline void Move(T a_X, T a_Y, T a_Z) { x += a_X; y += a_Y; z += a_Z; } inline void Move(const Vector3 & a_Diff) { x += a_Diff.x; y += a_Diff.y; z += a_Diff.z; } /** Returns a new Vector3i with coords set to std::floor() of this vector's coords. */ inline Vector3 Floor(void) const { return Vector3( FloorC(x), FloorC(y), FloorC(z) ); } /** Returns a new Vector3i with coords set to std::ceil() of this vector's coords. */ inline Vector3 Ceil() const { return Vector3( CeilC(x), CeilC(y), CeilC(z) ); } // tolua_end inline bool operator != (const Vector3 & a_Rhs) const { return !Equals(a_Rhs); } inline bool operator == (const Vector3 & a_Rhs) const { return Equals(a_Rhs); } inline bool operator > (const Vector3 & a_Rhs) const { return (SqrLength() > a_Rhs.SqrLength()); } inline bool operator < (const Vector3 & a_Rhs) const { return (SqrLength() < a_Rhs.SqrLength()); } inline void operator += (const Vector3 & a_Rhs) { x += a_Rhs.x; y += a_Rhs.y; z += a_Rhs.z; } inline void operator -= (const Vector3 & a_Rhs) { x -= a_Rhs.x; y -= a_Rhs.y; z -= a_Rhs.z; } inline void operator *= (const Vector3 & a_Rhs) { x *= a_Rhs.x; y *= a_Rhs.y; z *= a_Rhs.z; } inline void operator *= (T a_v) { x *= a_v; y *= a_v; z *= a_v; } // tolua_begin inline Vector3 operator + (const Vector3& a_Rhs) const { return Vector3( x + a_Rhs.x, y + a_Rhs.y, z + a_Rhs.z ); } inline Vector3 operator - (const Vector3& a_Rhs) const { return Vector3( x - a_Rhs.x, y - a_Rhs.y, z - a_Rhs.z ); } inline Vector3 operator - (void) const { return Vector3(-x, -y, -z); } inline Vector3 operator * (const Vector3& a_Rhs) const { return Vector3( x * a_Rhs.x, y * a_Rhs.y, z * a_Rhs.z ); } inline Vector3 operator / (const Vector3 & a_Rhs) { return Vector3( x / a_Rhs.x, y / a_Rhs.y, z / a_Rhs.z ); } inline Vector3 operator * (T a_v) const { return Vector3( x * a_v, y * a_v, z * a_v ); } inline Vector3 operator / (T a_v) const { return Vector3( x / a_v, y / a_v, z / a_v ); } /** Returns a copy of this vector moved by the specified amount on the X axis. */ inline Vector3 addedX(T a_AddX) const { return Vector3(x + a_AddX, y, z); } /** Returns a copy of this vector moved by the specified amount on the y axis. */ inline Vector3 addedY(T a_AddY) const { return Vector3(x, y + a_AddY, z); } /** Returns a copy of this vector moved by the specified amount on the Z axis. */ inline Vector3 addedZ(T a_AddZ) const { return Vector3(x, y, z + a_AddZ); } /** Returns a copy of this vector moved by the specified amount on the X and Z axes. */ inline Vector3 addedXZ(T a_AddX, T a_AddZ) const { return Vector3(x + a_AddX, y, z + a_AddZ); } /** Returns the coefficient for the (a_OtherEnd - this) line to reach the specified Z coord. The result satisfies the following equation: (*this + Result * (a_OtherEnd - *this)).z = a_Z If the line is too close to being parallel, this function returns NO_INTERSECTION */ inline double LineCoeffToXYPlane(const Vector3 & a_OtherEnd, T a_Z) const { if (std::abs(z - a_OtherEnd.z) < EPS) { return NO_INTERSECTION; } return (a_Z - z) / (a_OtherEnd.z - z); } /** Returns the coefficient for the (a_OtherEnd - this) line to reach the specified Y coord. The result satisfies the following equation: (*this + Result * (a_OtherEnd - *this)).y = a_Y If the line is too close to being parallel, this function returns NO_INTERSECTION */ inline double LineCoeffToXZPlane(const Vector3 & a_OtherEnd, T a_Y) const { if (std::abs(y - a_OtherEnd.y) < EPS) { return NO_INTERSECTION; } return (a_Y - y) / (a_OtherEnd.y - y); } /** Returns the coefficient for the (a_OtherEnd - this) line to reach the specified X coord. The result satisfies the following equation: (*this + Result * (a_OtherEnd - *this)).x = a_X If the line is too close to being parallel, this function returns NO_INTERSECTION */ inline double LineCoeffToYZPlane(const Vector3 & a_OtherEnd, T a_X) const { if (std::abs(x - a_OtherEnd.x) < EPS) { return NO_INTERSECTION; } return (a_X - x) / (a_OtherEnd.x - x); } /** Rotates the vector 90 degrees clockwise around the vertical axis. Note that this is specific to minecraft's axis ordering, which is X+ left, Z+ down. */ inline void TurnCW(void) { std::swap(x, z); x = -x; } /** Rotates the vector 90 degrees counterclockwise around the vertical axis. Note that this is specific to minecraft's axis ordering, which is X+ left, Z+ down. */ inline void TurnCCW(void) { std::swap(x, z); z = -z; } /** The max difference between two coords for which the coords are assumed equal. */ static const double EPS; /** Return value of LineCoeffToPlane() if the line is parallel to the plane. */ static const double NO_INTERSECTION; }; // tolua_end /** Allows formatting a Vector using the same format specifiers as for T e.g. `fmt::format("{0:0.2f}", Vector3f{0.0231f, 1.2146f, 1.0f}) == "{0.02, 1.21, 1.00}"` */ template class fmt::formatter> : public fmt::formatter { using Super = fmt::formatter; template void Write(FormatContext & a_Ctx, const char (& a_Str)[Len]) { const auto Itr = std::copy_n(&a_Str[0], Len - 1, a_Ctx.out()); a_Ctx.advance_to(Itr); } template void Write(FormatContext & a_Ctx, const What & a_Arg) { const auto Itr = Super::format(a_Arg, a_Ctx); a_Ctx.advance_to(Itr); } public: template auto format(const Vector3 & a_Vec, FormatContext & a_Ctx) { Write(a_Ctx, "{"); Write(a_Ctx, a_Vec.x); Write(a_Ctx, ", "); Write(a_Ctx, a_Vec.y); Write(a_Ctx, ", "); Write(a_Ctx, a_Vec.z); Write(a_Ctx, "}"); return a_Ctx.out(); } }; template <> inline Vector3 Vector3::Floor(void) const { return *this; } template class VectorHasher { public: /** Provides a hash of a vector's contents */ size_t operator()(const Vector3 & a_Vector) const { // Guaranteed to have non repeating hashes for any 128x128x128 area size_t Hash = static_cast(a_Vector.y); Hash <<= 16; Hash ^= static_cast(a_Vector.x); Hash ^= static_cast(a_Vector.z) << 8; return Hash; } }; template const double Vector3::EPS = 0.000001; template const double Vector3::NO_INTERSECTION = 1e70; // tolua_begin typedef Vector3 Vector3d; typedef Vector3 Vector3f; typedef Vector3 Vector3i; // tolua_end typedef std::vector cVector3iArray;