1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
// EndGen.cpp
// Implements the cEndGen class representing the generator for the End, both as a HeightGen and CompositionGen
#include "Globals.h"
#include "EndGen.h"
#include "../IniFile.h"
#include "../LinearUpscale.h"
enum
{
// Interpolation cell size:
INTERPOL_X = 4,
INTERPOL_Y = 4,
INTERPOL_Z = 4,
// Size of chunk data, downscaled before interpolation:
DIM_X = 16 / INTERPOL_X + 1,
DIM_Y = 256 / INTERPOL_Y + 1,
DIM_Z = 16 / INTERPOL_Z + 1,
};
////////////////////////////////////////////////////////////////////////////////
// cEndGen:
cEndGen::cEndGen(int a_Seed) :
m_Seed(a_Seed),
m_Perlin(m_Seed),
m_MainIslandSize(200),
m_IslandThickness(32),
m_IslandYOffset(30),
m_MainIslandFrequencyX(100),
m_MainIslandFrequencyY(80),
m_MainIslandFrequencyZ(100),
m_MainIslandMinThreshold(0.2f),
m_SmallIslandFrequencyX(50),
m_SmallIslandFrequencyY(80),
m_SmallIslandFrequencyZ(50),
m_SmallIslandMinThreshold(-0.5f),
m_LastChunkCoords(0x7fffffff, 0x7fffffff) // Use dummy coords that won't ever be used by real chunks
{
m_Perlin.AddOctave(1, 1);
m_Perlin.AddOctave(2, 0.5);
m_Perlin.AddOctave(4, 0.25);
}
void cEndGen::InitializeShapeGen(cIniFile & a_IniFile)
{
m_MainIslandSize = a_IniFile.GetValueSetI("Generator", "EndGenMainIslandSize", m_MainIslandSize);
m_IslandThickness = a_IniFile.GetValueSetI("Generator", "EndGenIslandThickness", m_IslandThickness);
m_IslandYOffset = a_IniFile.GetValueSetI("Generator", "EndGenIslandYOffset", m_IslandYOffset);
m_MainIslandFrequencyX =
static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenMainFrequencyX", m_MainIslandFrequencyX)
);
m_MainIslandFrequencyY =
static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenMainFrequencyY", m_MainIslandFrequencyY)
);
m_MainIslandFrequencyZ =
static_cast<NOISE_DATATYPE>(a_IniFile.GetValueSetF("Generator", "EndGenMainFrequencyZ", m_MainIslandFrequencyZ)
);
m_MainIslandMinThreshold = static_cast<NOISE_DATATYPE>(
a_IniFile.GetValueSetF("Generator", "EndGenMainMinThreshold", m_MainIslandMinThreshold)
);
m_SmallIslandFrequencyX = static_cast<NOISE_DATATYPE>(
a_IniFile.GetValueSetF("Generator", "EndGenSmallFrequencyX", m_SmallIslandFrequencyX)
);
m_SmallIslandFrequencyY = static_cast<NOISE_DATATYPE>(
a_IniFile.GetValueSetF("Generator", "EndGenSmallFrequencyY", m_SmallIslandFrequencyY)
);
m_SmallIslandFrequencyZ = static_cast<NOISE_DATATYPE>(
a_IniFile.GetValueSetF("Generator", "EndGenSmallFrequencyZ", m_SmallIslandFrequencyZ)
);
m_SmallIslandMinThreshold = static_cast<NOISE_DATATYPE>(
a_IniFile.GetValueSetF("Generator", "EndGenSmallMinThreshold", m_SmallIslandMinThreshold)
);
}
void cEndGen::PrepareState(cChunkCoords a_ChunkCoords)
{
if (m_LastChunkCoords == a_ChunkCoords)
{
return;
}
m_LastChunkCoords = a_ChunkCoords;
GenerateNoiseArray();
}
void cEndGen::GenerateNoiseArray(void)
{
NOISE_DATATYPE NoiseData[DIM_X * DIM_Y * DIM_Z]; // [x + DIM_X * z + DIM_X * DIM_Z * y]
NOISE_DATATYPE Workspace[DIM_X * DIM_Y * DIM_Z]; // [x + DIM_X * z + DIM_X * DIM_Z * y]
// Choose the frequency to use depending on the distance from spawn.
auto distanceFromSpawn =
cChunkDef::RelativeToAbsolute({cChunkDef::Width / 2, 0, cChunkDef::Width / 2}, m_LastChunkCoords).Length();
auto frequencyX = distanceFromSpawn > m_MainIslandSize * 2 ? m_SmallIslandFrequencyX : m_MainIslandFrequencyX;
auto frequencyY = distanceFromSpawn > m_MainIslandSize * 2 ? m_SmallIslandFrequencyY : m_MainIslandFrequencyY;
auto frequencyZ = distanceFromSpawn > m_MainIslandSize * 2 ? m_SmallIslandFrequencyZ : m_MainIslandFrequencyZ;
// Generate the downscaled noise:
auto StartX = static_cast<NOISE_DATATYPE>(m_LastChunkCoords.m_ChunkX * cChunkDef::Width) / frequencyX;
auto EndX = static_cast<NOISE_DATATYPE>((m_LastChunkCoords.m_ChunkX + 1) * cChunkDef::Width) / frequencyX;
auto StartZ = static_cast<NOISE_DATATYPE>(m_LastChunkCoords.m_ChunkZ * cChunkDef::Width) / frequencyZ;
auto EndZ = static_cast<NOISE_DATATYPE>((m_LastChunkCoords.m_ChunkZ + 1) * cChunkDef::Width) / frequencyZ;
auto StartY = 0.0f;
auto EndY = static_cast<NOISE_DATATYPE>(cChunkDef::Height) / frequencyY;
m_Perlin.Generate3D(NoiseData, DIM_X, DIM_Z, DIM_Y, StartX, EndX, StartZ, EndZ, StartY, EndY, Workspace);
// Add distance:
for (int y = 0; y < DIM_Y; y++)
{
auto ValY = static_cast<NOISE_DATATYPE>(2 * INTERPOL_Y * y - m_IslandThickness) / m_IslandThickness;
ValY = static_cast<NOISE_DATATYPE>(std::pow(ValY, 6));
for (int z = 0; z < DIM_Z; z++)
{
for (int x = 0; x < DIM_X; x++)
{
NoiseData[x + DIM_X * z + DIM_X * DIM_Z * y] += ValY;
} // for x
} // for z
} // for y
// Upscale into real chunk size:
LinearUpscale3DArray(NoiseData, DIM_X, DIM_Z, DIM_Y, m_NoiseArray, INTERPOL_X, INTERPOL_Z, INTERPOL_Y);
}
void cEndGen::GenShape(cChunkCoords a_ChunkCoords, cChunkDesc::Shape & a_Shape)
{
PrepareState(a_ChunkCoords);
int MaxY = std::min(static_cast<int>(1.75 * m_IslandThickness + m_IslandYOffset), cChunkDef::Height - 1);
// Choose which threshold to use depending on the distance from spawn.
double chunkDistanceFromSpawn =
cChunkDef::RelativeToAbsolute({cChunkDef::Width / 2, 0, cChunkDef::Width / 2}, a_ChunkCoords).Length();
double minThreshold =
chunkDistanceFromSpawn > m_MainIslandSize * 2 ? m_SmallIslandMinThreshold : m_MainIslandMinThreshold;
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int x = 0; x < cChunkDef::Width; x++)
{
// Calculate the required treshold based on the distance from spawn.
// This way a void can be generated between the main island and the other islands.
double distanceFromSpawn = cChunkDef::RelativeToAbsolute({x, 0, z}, a_ChunkCoords).Length();
double pow = std::pow((distanceFromSpawn - m_MainIslandSize) / m_MainIslandSize / 2, 3);
double mult = 3 * ((distanceFromSpawn - m_MainIslandSize) / m_MainIslandSize);
double threshold = std::min(pow - mult, minThreshold);
for (int y = 0; y < m_IslandYOffset; y++)
{
cChunkDesc::SetShapeIsSolidAt(a_Shape, x, y, z, false);
}
for (int y = m_IslandYOffset; y < MaxY; y++)
{
cChunkDesc::SetShapeIsSolidAt(
a_Shape,
x,
y,
z,
m_NoiseArray[(y - m_IslandYOffset) * 17 * 17 + z * 17 + x] <= threshold
);
}
for (int y = MaxY; y < cChunkDef::Height; y++)
{
cChunkDesc::SetShapeIsSolidAt(a_Shape, x, y, z, false);
}
} // for x
} // for z
}
void cEndGen::ComposeTerrain(cChunkDesc & a_ChunkDesc, const cChunkDesc::Shape & a_Shape)
{
a_ChunkDesc.FillBlocks(E_BLOCK_AIR, 0);
for (int z = 0; z < cChunkDef::Width; z++)
{
for (int x = 0; x < cChunkDef::Width; x++)
{
for (int y = 0; y < cChunkDef::Height; y++)
{
if (cChunkDesc::GetShapeIsSolidAt(a_Shape, x, y, z))
{
a_ChunkDesc.SetBlockType(x, y, z, E_BLOCK_END_STONE);
}
} // for y
} // for x
} // for z
}
|