1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
// PieceGeneratorBFSTree.cpp
// Implements the cPieceGeneratorBFSTree class for generating structures composed of individual "pieces" in a simple tree
/*
The generator keeps a pool of currently-open connectors, chooses one at random and tries to place a piece on it,
thus possibly extending the pool of open connectors with the new piece's ones (like breadth-first search).
*/
#include "Globals.h"
#include "PieceGeneratorBFSTree.h"
#include "VerticalStrategy.h"
#include "VerticalLimit.h"
////////////////////////////////////////////////////////////////////////////////
// cPieceGeneratorBFSTree:
cPieceGeneratorBFSTree::cPieceGeneratorBFSTree(cPiecePool & a_PiecePool, int a_Seed):
m_PiecePool(a_PiecePool),
m_Noise(a_Seed),
m_Seed(a_Seed)
{
}
cPlacedPiecePtr cPieceGeneratorBFSTree::PlaceStartingPiece(int a_BlockX, int a_BlockZ, cFreeConnectors & a_OutConnectors)
{
m_PiecePool.Reset();
int rnd = m_Noise.IntNoise2DInt(a_BlockX, a_BlockZ) / 7;
// Choose a random one of the starting pieces:
cPieces StartingPieces = m_PiecePool.GetStartingPieces();
int Total = 0;
for (cPieces::const_iterator itr = StartingPieces.begin(), end = StartingPieces.end(); itr != end; ++itr)
{
Total += m_PiecePool.GetStartingPieceWeight(**itr);
}
cPiece * StartingPiece;
if (Total > 0)
{
int Chosen = rnd % Total;
StartingPiece = StartingPieces.front();
for (cPieces::const_iterator itr = StartingPieces.begin(), end = StartingPieces.end(); itr != end; ++itr)
{
Chosen -= m_PiecePool.GetStartingPieceWeight(**itr);
if (Chosen <= 0)
{
StartingPiece = *itr;
break;
}
}
}
else
{
// All pieces returned zero weight, but we need one to start. Choose with equal chance:
StartingPiece = StartingPieces[static_cast<size_t>(rnd) % StartingPieces.size()];
}
rnd = rnd >> 16;
// Choose a random supported rotation:
int Rotations[4] = {0};
int NumRotations = 1;
for (size_t i = 1; i < ARRAYCOUNT(Rotations); i++)
{
if (StartingPiece->CanRotateCCW(static_cast<int>(i)))
{
Rotations[NumRotations] = static_cast<int>(i);
NumRotations += 1;
}
}
int Rotation = Rotations[rnd % NumRotations];
int BlockY = StartingPiece->GetStartingPieceHeight(a_BlockX, a_BlockZ);
ASSERT(BlockY >= 0); // The vertical strategy should have been provided and should give valid coords
cPlacedPiece * res = new cPlacedPiece(nullptr, *StartingPiece, Vector3i(a_BlockX, BlockY, a_BlockZ), Rotation);
// Place the piece's connectors into a_OutConnectors:
const cPiece::cConnectors & Conn = StartingPiece->GetConnectors();
for (cPiece::cConnectors::const_iterator itr = Conn.begin(), end = Conn.end(); itr != end; ++itr)
{
a_OutConnectors.push_back(
cFreeConnector(res, StartingPiece->RotateMoveConnector(*itr, Rotation, a_BlockX, BlockY, a_BlockZ))
);
}
return cPlacedPiecePtr(res);
}
bool cPieceGeneratorBFSTree::TryPlacePieceAtConnector(
const cPlacedPiece & a_ParentPiece,
const cPiece::cConnector & a_Connector,
cPlacedPieces & a_OutPieces,
cPieceGeneratorBFSTree::cFreeConnectors & a_OutConnectors,
bool a_OnlyClosurePieces
)
{
// Get a list of available connections:
cConnections Connections;
int WantedConnectorType = -a_Connector.m_Type;
cPieces AvailablePieces = m_PiecePool.GetPiecesWithConnector(WantedConnectorType);
if (a_OnlyClosurePieces)
{
cPieces closurePieces;
closurePieces.reserve(AvailablePieces.size());
for (auto & piece : AvailablePieces)
{
auto hitBox = piece->GetHitBox();
hitBox.Sort();
auto pieceSize = hitBox.p2 - hitBox.p1;
auto connectors = piece->GetConnectors();
Vector3i lastCoord = connectors[0].m_Pos;
bool hasMultipleConnectors = false;
for (const auto & connector : connectors)
{
if (connector.m_Pos != lastCoord)
{
hasMultipleConnectors = true;
break;
}
}
if (!hasMultipleConnectors)
{
closurePieces.push_back(piece);
}
}
AvailablePieces = closurePieces;
}
Connections.reserve(AvailablePieces.size());
Vector3i ConnPos = cPiece::cConnector::AddDirection(a_Connector.m_Pos, a_Connector.m_Direction); // The position at which the new connector should be placed - 1 block away from the current connector
int WeightTotal = 0;
FindPieceForConnector(AvailablePieces, a_ParentPiece, a_Connector, WantedConnectorType, ConnPos, a_OutPieces, Connections, WeightTotal);
if (Connections.empty())
{
// No available connections, bail out
return false;
}
ASSERT(WeightTotal > 0);
// Choose a random connection from the list, based on the weights:
int rnd = (m_Noise.IntNoise3DInt(a_Connector.m_Pos.x, a_Connector.m_Pos.y, a_Connector.m_Pos.z) / 7) % WeightTotal;
size_t ChosenIndex = 0;
for (cConnections::const_iterator itr = Connections.begin(), end = Connections.end(); itr != end; ++itr, ++ChosenIndex)
{
rnd -= itr->m_Weight;
if (rnd <= 0)
{
// This is the piece to choose
break;
}
}
cConnection & Conn = Connections[ChosenIndex];
// Place the piece:
Vector3i NewPos = Conn.m_Piece->RotatePos(Conn.m_Connector.m_Pos, Conn.m_NumCCWRotations);
ConnPos -= NewPos;
auto PlacedPiece = std::make_unique<cPlacedPiece>(&a_ParentPiece, *(Conn.m_Piece), ConnPos, Conn.m_NumCCWRotations);
// Add the new piece's connectors to the list of free connectors:
cPiece::cConnectors Connectors = Conn.m_Piece->GetConnectors();
for (cPiece::cConnectors::const_iterator itr = Connectors.begin(), end = Connectors.end(); itr != end; ++itr)
{
if (itr->m_Pos.Equals(Conn.m_Connector.m_Pos))
{
// This is the connector through which we have been connected to the parent, don't add
continue;
}
a_OutConnectors.emplace_back(PlacedPiece.get(), Conn.m_Piece->RotateMoveConnector(*itr, Conn.m_NumCCWRotations, ConnPos.x, ConnPos.y, ConnPos.z));
}
a_OutPieces.push_back(std::move(PlacedPiece));
return true;
}
void cPieceGeneratorBFSTree::FindPieceForConnector(cPieces& AvailablePieces, const cPlacedPiece& a_ParentPiece, const cPiece::cConnector& a_Connector, int WantedConnectorType, Vector3i& ConnPos, cPlacedPieces& a_OutPieces, cPieceGeneratorBFSTree::cConnections& Connections, int& WeightTotal)
{
for (cPieces::iterator itrP = AvailablePieces.begin(), endP = AvailablePieces.end(); itrP != endP; ++itrP)
{
// Get the relative chance of this piece being generated in this path:
int Weight = m_PiecePool.GetPieceWeight(a_ParentPiece, a_Connector, **itrP);
if (Weight <= 0)
{
continue;
}
// Try fitting each of the piece's connector:
cPiece::cConnectors Connectors = (*itrP)->GetConnectors();
auto verticalLimit = (*itrP)->GetVerticalLimit();
for (cPiece::cConnectors::iterator itrC = Connectors.begin(), endC = Connectors.end(); itrC != endC; ++itrC)
{
if (itrC->m_Type != WantedConnectorType)
{
continue;
}
// This is a same-type connector, find out how to rotate to it:
int NumCCWRotations = cPiece::cConnector::GetNumCCWRotationsToFit(a_Connector.m_Direction, itrC->m_Direction);
if ((NumCCWRotations < 0) || !(*itrP)->CanRotateCCW(NumCCWRotations))
{
// Doesn't support this rotation
continue;
}
// Check if the piece's VerticalLimit allows this connection:
if ((verticalLimit != nullptr) && (!verticalLimit->CanBeAtHeight(ConnPos.x, ConnPos.z, ConnPos.y - itrC->m_Pos.y)))
{
continue;
}
if (!CheckConnection(a_Connector, ConnPos, **itrP, *itrC, NumCCWRotations, a_OutPieces))
{
// Doesn't fit in this rotation
continue;
}
// Fits, add it to list of possibile connections:
Connections.emplace_back(**itrP, *itrC, NumCCWRotations, Weight);
WeightTotal += Weight;
} // for itrC - Connectors[]
} // for itrP - AvailablePieces[]
}
bool cPieceGeneratorBFSTree::CheckConnection(
const cPiece::cConnector & a_ExistingConnector,
const Vector3i & a_ToPos,
const cPiece & a_Piece,
const cPiece::cConnector & a_NewConnector,
int a_NumCCWRotations,
const cPlacedPieces & a_OutPieces
)
{
// For each placed piece, test the hitbox against the new piece:
cCuboid RotatedHitBox = a_Piece.RotateHitBoxToConnector(a_NewConnector, a_ToPos, a_NumCCWRotations);
RotatedHitBox.Sort();
for (cPlacedPieces::const_iterator itr = a_OutPieces.begin(), end = a_OutPieces.end(); itr != end; ++itr)
{
if ((*itr)->GetHitBox().DoesIntersect(RotatedHitBox))
{
return false;
}
}
return true;
}
void cPieceGeneratorBFSTree::PlacePieces(int a_BlockX, int a_BlockZ, int a_MaxDepth, cPlacedPieces & a_OutPieces)
{
a_OutPieces.clear();
cFreeConnectors ConnectorPool;
// Place the starting piece:
a_OutPieces.push_back(PlaceStartingPiece(a_BlockX, a_BlockZ, ConnectorPool));
/*
// DEBUG:
FLOGD("Placed the starting piece at {0}", Vector3i{a_BlockX, a_BlockY, a_BlockZ});
cCuboid Hitbox = a_OutPieces[0]->GetHitBox();
Hitbox.Sort();
FLOGD(" Hitbox: {0} - {1} ({2} * {3} * {4})\n",
Hitbox.p1, Hitbox.p2,
Hitbox.DifX() + 1, Hitbox.DifY() + 1, Hitbox.DifZ() + 1
);
DebugConnectorPool(ConnectorPool, 0);
//*/
// Place pieces at the available connectors:
/*
Instead of removing them one by one from the pool, we process them sequentially and take note of the last
processed one. To save on memory, once the number of processed connectors reaches a big number, a chunk
of the connectors is removed.
*/
size_t NumProcessed = 0;
while (ConnectorPool.size() > NumProcessed)
{
cFreeConnector & Conn = ConnectorPool[NumProcessed];
if (Conn.m_Piece->GetDepth() < a_MaxDepth)
{
if (TryPlacePieceAtConnector(*Conn.m_Piece, Conn.m_Connector, a_OutPieces, ConnectorPool))
{
/*
// DEBUG:
const cPlacedPiece * NewPiece = a_OutPieces.back();
const Vector3i & Coords = NewPiece->GetCoords();
FLOGD("Placed a new piece at {0}, rotation {1}\n", Coords, NewPiece->GetNumCCWRotations());
cCuboid Hitbox = NewPiece->GetHitBox();
Hitbox.Sort();
FLOGD(" Hitbox: {0} - {1} ({2} * {3} * {4})\n",
Hitbox.p1, Hitbox.p2,
Hitbox.DifX() + 1, Hitbox.DifY() + 1, Hitbox.DifZ() + 1
);
DebugConnectorPool(ConnectorPool, NumProcessed + 1);
//*/
}
}
else
{
TryPlacePieceAtConnector(*Conn.m_Piece, Conn.m_Connector, a_OutPieces, ConnectorPool, true);
}
NumProcessed++;
if (NumProcessed > 1000)
{
typedef cPieceGeneratorBFSTree::cFreeConnectors::difference_type difType;
ConnectorPool.erase(ConnectorPool.begin(), ConnectorPool.begin() + static_cast<difType>(NumProcessed));
NumProcessed = 0;
}
}
}
//*
// DEBUG:
void cPieceGeneratorBFSTree::DebugConnectorPool(const cPieceGeneratorBFSTree::cFreeConnectors & a_ConnectorPool, size_t a_NumProcessed)
{
fmt::print(" Connector pool: {0} items\n", a_ConnectorPool.size() - a_NumProcessed);
size_t idx = 0;
typedef cPieceGeneratorBFSTree::cFreeConnectors::difference_type difType;
for (auto itr = a_ConnectorPool.cbegin() + static_cast<difType>(a_NumProcessed), end = a_ConnectorPool.cend(); itr != end; ++itr, ++idx)
{
fmt::print(" {0}: {{{1}, {2}, {3}}}, type {4}, direction {5}, depth {6}\n",
idx,
itr->m_Connector.m_Pos.x, itr->m_Connector.m_Pos.y, itr->m_Connector.m_Pos.z,
itr->m_Connector.m_Type,
cPiece::cConnector::DirectionToString(itr->m_Connector.m_Direction),
itr->m_Piece->GetDepth()
);
} // for itr - a_ConnectorPool[]
}
//*/
////////////////////////////////////////////////////////////////////////////////
// cPieceGeneratorBFSTree::cConnection:
cPieceGeneratorBFSTree::cConnection::cConnection(cPiece & a_Piece, cPiece::cConnector & a_Connector, int a_NumCCWRotations, int a_Weight) :
m_Piece(&a_Piece),
m_Connector(a_Connector),
m_NumCCWRotations(a_NumCCWRotations),
m_Weight(a_Weight)
{
}
////////////////////////////////////////////////////////////////////////////////
// cPieceGeneratorBFSTree::cFreeConnector:
cPieceGeneratorBFSTree::cFreeConnector::cFreeConnector(cPlacedPiece * a_Piece, const cPiece::cConnector & a_Connector) :
m_Piece(a_Piece),
m_Connector(a_Connector)
{
}
|