summaryrefslogtreecommitdiffstats
path: root/src/ProbabDistrib.cpp
blob: 5fa17c2761ab09578bcf24b0606154ff770791b3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

// ProbabDistrib.cpp

// Implements the cProbabDistrib class representing a discrete probability distribution curve and random generator

#include "Globals.h"
#include "ProbabDistrib.h"
#include "MersenneTwister.h"






cProbabDistrib::cProbabDistrib(int a_MaxValue) :
	m_MaxValue(a_MaxValue),
	m_Sum(-1)
{
}






void cProbabDistrib::SetPoints(const cProbabDistrib::cPoints & a_Points)
{
	ASSERT(!a_Points.empty());
	m_Sum = 0;
	m_Cumulative.clear();
	m_Cumulative.reserve(a_Points.size() + 1);
	int ProbSum = 0;
	int LastProb = 0;
	int LastValue = -1;
	if (a_Points[0].m_Value != 0)
	{
		m_Cumulative.push_back(cPoint(0, 0));  // Always push in the [0, 0] point for easier search algorithm bounds
		LastValue = 0;
	}
	for (cPoints::const_iterator itr = a_Points.begin(), end = a_Points.end(); itr != end; ++itr)
	{
		if (itr->m_Value == LastValue)
		{
			continue;
		}
		
		// Add the current trapezoid to the sum:
		ProbSum += (LastProb + itr->m_Probability) * (itr->m_Value - LastValue) / 2;
		LastProb = itr->m_Probability;
		LastValue = itr->m_Value;
		m_Cumulative.push_back(cPoint(itr->m_Value, ProbSum));
	}  // for itr - a_Points[]
	if (LastValue != m_MaxValue)
	{
		m_Cumulative.push_back(cPoint(m_MaxValue, 0));  // Always push in the last point for easier search algorithm bounds
	}
	m_Sum = ProbSum;
}





bool cProbabDistrib::SetDefString(const AString & a_DefString)
{
	AStringVector Points = StringSplitAndTrim(a_DefString, ";");
	if (Points.empty())
	{
		return false;
	}
	cPoints Pts;
	for (AStringVector::const_iterator itr = Points.begin(), end = Points.end(); itr != end; ++itr)
	{
		AStringVector Split = StringSplitAndTrim(*itr, ",");
		if (Split.size() != 2)
		{
			// Bad format
			return false;
		}
		int Value = atoi(Split[0].c_str());
		int Prob  = atoi(Split[1].c_str());
		if (
			((Value == 0) && (Split[0] != "0")) ||
			((Prob  == 0) && (Split[1] != "0"))
		)
		{
			// Number parse error
			return false;
		}
		Pts.push_back(cPoint(Value, Prob));
	}  // for itr - Points[]
	
	SetPoints(Pts);
	return true;
}





int cProbabDistrib::Random(MTRand & a_Rand) const
{
	int v = a_Rand.randInt(m_Sum);
	return MapValue(v);
}





int cProbabDistrib::MapValue(int a_OrigValue) const
{
	ASSERT(a_OrigValue >= 0);
	ASSERT(a_OrigValue < m_Sum);
	
	// Binary search through m_Cumulative for placement:
	size_t Lo = 0;
	size_t Hi = m_Cumulative.size() - 1;
	while (Hi - Lo > 1)
	{
		int Mid = (Lo + Hi) / 2;
		int MidProbab = m_Cumulative[Mid].m_Probability;
		if (MidProbab < a_OrigValue)
		{
			Lo = Mid;
		}
		else
		{
			Hi = Mid;
		}
	}
	ASSERT(Hi - Lo == 1);
	
	// Linearly interpolate between Lo and Hi:
	int ProbDif  = m_Cumulative[Hi].m_Probability - m_Cumulative[Lo].m_Probability;
	int ValueDif = m_Cumulative[Hi].m_Value - m_Cumulative[Lo].m_Value;
	return m_Cumulative[Lo].m_Value + (a_OrigValue - m_Cumulative[Lo].m_Probability) * ValueDif / ProbDif;
}




hhhhhh