1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
// StringCompression.cpp
// Implements the wrapping functions for compression and decompression
#include "Globals.h"
#include "ByteBuffer.h"
#include "StringCompression.h"
#include <libdeflate.h>
std::string_view Compression::Result::GetStringView() const
{
const auto View = GetView();
return {reinterpret_cast<const char *>(View.data()), View.size()};
}
ContiguousByteBufferView Compression::Result::GetView() const
{
// Get a generic std::byte * to what the variant is currently storing:
return {
std::visit(
[](const auto & Buffer) -> const std::byte *
{
using Variant = std::decay_t<decltype(Buffer)>;
if constexpr (std::is_same_v<Variant, Compression::Result::Static>)
{
return Buffer.data();
}
else
{
return Buffer.get();
}
},
Storage
),
Size
};
}
Compression::Compressor::Compressor(int CompressionFactor)
{
m_Handle = libdeflate_alloc_compressor(CompressionFactor);
if (m_Handle == nullptr)
{
throw std::bad_alloc();
}
}
Compression::Compressor::~Compressor()
{
libdeflate_free_compressor(m_Handle);
}
template <auto Algorithm>
Compression::Result Compression::Compressor::Compress(const void * const Input, const size_t Size)
{
// First see if the stack buffer has enough space:
{
Result::Static Buffer;
const auto BytesWrittenOut = Algorithm(m_Handle, Input, Size, Buffer.data(), Buffer.size());
if (BytesWrittenOut != 0)
{
return {Buffer, BytesWrittenOut};
}
}
// No it doesn't. Allocate space on the heap to write the compression result, increasing in powers of 2.
// This will either succeed, or except with bad_alloc.
auto DynamicCapacity = Result::StaticCapacity * 2;
while (true)
{
auto Dynamic = cpp20::make_unique_for_overwrite<Result::Dynamic::element_type[]>(DynamicCapacity);
const auto BytesWrittenOut = Algorithm(m_Handle, Input, Size, Dynamic.get(), DynamicCapacity);
if (BytesWrittenOut != 0)
{
return {std::move(Dynamic), BytesWrittenOut};
}
DynamicCapacity *= 2;
}
}
Compression::Result Compression::Compressor::CompressGZip(const ContiguousByteBufferView Input)
{
return Compress<&libdeflate_gzip_compress>(Input.data(), Input.size());
}
Compression::Result Compression::Compressor::CompressZLib(const ContiguousByteBufferView Input)
{
return Compress<&libdeflate_zlib_compress>(Input.data(), Input.size());
}
Compression::Result Compression::Compressor::CompressZLib(const void * const Input, const size_t Size)
{
return Compress<&libdeflate_zlib_compress>(Input, Size);
}
Compression::Extractor::Extractor()
{
m_Handle = libdeflate_alloc_decompressor();
if (m_Handle == nullptr)
{
throw std::bad_alloc();
}
}
Compression::Extractor::~Extractor()
{
libdeflate_free_decompressor(m_Handle);
}
Compression::Result Compression::Extractor::ExtractGZip(ContiguousByteBufferView Input)
{
return Extract<&libdeflate_gzip_decompress>(Input);
}
Compression::Result Compression::Extractor::ExtractZLib(ContiguousByteBufferView Input)
{
return Extract<&libdeflate_zlib_decompress>(Input);
}
Compression::Result Compression::Extractor::ExtractZLib(ContiguousByteBufferView Input, size_t UncompressedSize)
{
return Extract<&libdeflate_zlib_decompress>(Input, UncompressedSize);
}
template <auto Algorithm> Compression::Result Compression::Extractor::Extract(const ContiguousByteBufferView Input)
{
// First see if the stack buffer has enough space:
{
Result::Static Buffer;
size_t BytesWrittenOut;
switch (Algorithm(m_Handle, Input.data(), Input.size(), Buffer.data(), Buffer.size(), &BytesWrittenOut))
{
case LIBDEFLATE_SUCCESS: return {Buffer, BytesWrittenOut};
case LIBDEFLATE_INSUFFICIENT_SPACE: break;
default: throw std::runtime_error("Data extraction failed.");
}
}
// No it doesn't. Allocate space on the heap to write the compression result, increasing in powers of 2.
auto DynamicCapacity = Result::StaticCapacity * 2;
while (true)
{
size_t BytesWrittenOut;
auto Dynamic = cpp20::make_unique_for_overwrite<Result::Dynamic::element_type[]>(DynamicCapacity);
switch (Algorithm(m_Handle, Input.data(), Input.size(), Dynamic.get(), DynamicCapacity, &BytesWrittenOut))
{
case libdeflate_result::LIBDEFLATE_SUCCESS: return {std::move(Dynamic), BytesWrittenOut};
case libdeflate_result::LIBDEFLATE_INSUFFICIENT_SPACE:
{
DynamicCapacity *= 2;
continue;
}
default: throw std::runtime_error("Data extraction failed.");
}
}
}
template <auto Algorithm>
Compression::Result Compression::Extractor::Extract(const ContiguousByteBufferView Input, size_t UncompressedSize)
{
// Here we have the expected size after extraction, so directly use a suitable buffer size:
if (UncompressedSize <= Result::StaticCapacity)
{
if (Result::Static Buffer;
Algorithm(m_Handle, Input.data(), Input.size(), Buffer.data(), UncompressedSize, nullptr) ==
libdeflate_result::LIBDEFLATE_SUCCESS)
{
return {Buffer, UncompressedSize};
}
}
else if (auto Dynamic = cpp20::make_unique_for_overwrite<Result::Dynamic::element_type[]>(UncompressedSize);
Algorithm(m_Handle, Input.data(), Input.size(), Dynamic.get(), UncompressedSize, nullptr) ==
libdeflate_result::LIBDEFLATE_SUCCESS)
{
return {std::move(Dynamic), UncompressedSize};
}
throw std::runtime_error("Data extraction failed.");
}
|