from __future__ import annotations from dataclasses import dataclass from .Provider import IterListProvider, ProviderType from .Provider import ( AIChatFree, AmigoChat, Blackbox, Blackbox2, BingCreateImages, ChatGpt, ChatGptEs, Cloudflare, Copilot, CopilotAccount, DDG, DeepInfraChat, Free2GPT, GigaChat, Gemini, GeminiPro, HuggingChat, HuggingFace, Liaobots, Airforce, MagickPen, Mhystical, MetaAI, MicrosoftDesigner, OpenaiChat, OpenaiAccount, PerplexityLabs, Pi, Pizzagpt, Reka, ReplicateHome, RubiksAI, TeachAnything, Upstage, ) @dataclass(unsafe_hash=True) class Model: """ Represents a machine learning model configuration. Attributes: name (str): Name of the model. base_provider (str): Default provider for the model. best_provider (ProviderType): The preferred provider for the model, typically with retry logic. """ name: str base_provider: str best_provider: ProviderType = None @staticmethod def __all__() -> list[str]: """Returns a list of all model names.""" return _all_models ### Default ### default = Model( name = "", base_provider = "", best_provider = IterListProvider([ DDG, Pizzagpt, ReplicateHome, Blackbox2, Upstage, Blackbox, Free2GPT, DeepInfraChat, Airforce, ChatGptEs, Cloudflare, Mhystical, AmigoChat, ]) ) ############ ### Text ### ############ ### OpenAI ### # gpt-3.5 gpt_35_turbo = Model( name = 'gpt-3.5-turbo', base_provider = 'OpenAI', best_provider = Blackbox ) # gpt-4 gpt_4o = Model( name = 'gpt-4o', base_provider = 'OpenAI', best_provider = IterListProvider([Blackbox, ChatGptEs, ChatGpt, AmigoChat, Airforce, Liaobots, OpenaiChat]) ) gpt_4o_mini = Model( name = 'gpt-4o-mini', base_provider = 'OpenAI', best_provider = IterListProvider([DDG, ChatGptEs, Pizzagpt, ChatGpt, AmigoChat, Airforce, RubiksAI, MagickPen, Liaobots, OpenaiChat]) ) gpt_4_turbo = Model( name = 'gpt-4-turbo', base_provider = 'OpenAI', best_provider = IterListProvider([Liaobots, Airforce]) ) gpt_4 = Model( name = 'gpt-4', base_provider = 'OpenAI', best_provider = IterListProvider([DDG, Copilot, OpenaiChat, Liaobots, Airforce]) ) # o1 o1_preview = Model( name = 'o1-preview', base_provider = 'OpenAI', best_provider = Liaobots ) o1_mini = Model( name = 'o1-mini', base_provider = 'OpenAI', best_provider = IterListProvider([Liaobots, Airforce]) ) ### GigaChat ### gigachat = Model( name = 'GigaChat:latest', base_provider = 'gigachat', best_provider = GigaChat ) ### Meta ### meta = Model( name = "meta-ai", base_provider = "Meta", best_provider = MetaAI ) # llama 2 llama_2_7b = Model( name = "llama-2-7b", base_provider = "Meta Llama", best_provider = IterListProvider([Cloudflare, Airforce]) ) # llama 3 llama_3_8b = Model( name = "llama-3-8b", base_provider = "Meta Llama", best_provider = Cloudflare ) # llama 3.1 llama_3_1_8b = Model( name = "llama-3.1-8b", base_provider = "Meta Llama", best_provider = IterListProvider([Blackbox, DeepInfraChat, Cloudflare, Airforce, PerplexityLabs]) ) llama_3_1_70b = Model( name = "llama-3.1-70b", base_provider = "Meta Llama", best_provider = IterListProvider([DDG, DeepInfraChat, Blackbox, Blackbox2, TeachAnything, Airforce, RubiksAI, HuggingChat, HuggingFace, PerplexityLabs]) ) llama_3_1_405b = Model( name = "llama-3.1-405b", base_provider = "Meta Llama", best_provider = IterListProvider([Blackbox, AmigoChat]) ) # llama 3.2 llama_3_2_1b = Model( name = "llama-3.2-1b", base_provider = "Meta Llama", best_provider = Cloudflare ) llama_3_2_11b = Model( name = "llama-3.2-11b", base_provider = "Meta Llama", best_provider = IterListProvider([HuggingChat, HuggingFace]) ) llama_3_2_90b = Model( name = "llama-3.2-90b", base_provider = "Meta Llama", best_provider = AmigoChat ) # CodeLlama codellama_34b = Model( name = "codellama-34b", base_provider = "Meta Llama", best_provider = AmigoChat ) ### Mistral ### mixtral_7b = Model( name = "mixtral-7b", base_provider = "Mistral", best_provider = AmigoChat ) mixtral_8x7b = Model( name = "mixtral-8x7b", base_provider = "Mistral", best_provider = DDG ) mistral_tiny = Model( name = "mistral-tiny", base_provider = "Mistral", best_provider = AmigoChat ) mistral_nemo = Model( name = "mistral-nemo", base_provider = "Mistral", best_provider = IterListProvider([HuggingChat, AmigoChat, HuggingFace]) ) ### NousResearch ### hermes_2_dpo = Model( name = "hermes-2-dpo", base_provider = "NousResearch", best_provider = Airforce ) hermes_2_pro = Model( name = "hermes-2-pro", base_provider = "NousResearch", best_provider = Airforce ) hermes_3 = Model( name = "hermes-3", base_provider = "NousResearch", best_provider = IterListProvider([HuggingChat, HuggingFace]) ) mixtral_8x7b_dpo = Model( name = "mixtral-8x7b-dpo", base_provider = "NousResearch", best_provider = IterListProvider([AmigoChat, Airforce]) ) ### Microsoft ### phi_2 = Model( name = "phi-2", base_provider = "Microsoft", best_provider = Airforce ) phi_3_5_mini = Model( name = "phi-3.5-mini", base_provider = "Microsoft", best_provider = IterListProvider([HuggingChat, HuggingFace]) ) ### Google DeepMind ### # gemini gemini_pro = Model( name = 'gemini-pro', base_provider = 'Google DeepMind', best_provider = IterListProvider([Blackbox, AIChatFree, GeminiPro, Liaobots]) ) gemini_flash = Model( name = 'gemini-flash', base_provider = 'Google DeepMind', best_provider = IterListProvider([Blackbox, AmigoChat, Liaobots]) ) gemini = Model( name = 'gemini', base_provider = 'Google DeepMind', best_provider = Gemini ) # gemma gemma_2b = Model( name = 'gemma-2b', base_provider = 'Google', best_provider = IterListProvider([ReplicateHome, AmigoChat]) ) ### Anthropic ### # claude 3 claude_3_opus = Model( name = 'claude-3-opus', base_provider = 'Anthropic', best_provider = Liaobots ) claude_3_sonnet = Model( name = 'claude-3-sonnet', base_provider = 'Anthropic', best_provider = Liaobots ) claude_3_haiku = Model( name = 'claude-3-haiku', base_provider = 'Anthropic', best_provider = IterListProvider([DDG, Liaobots]) ) # claude 3.5 claude_3_5_sonnet = Model( name = 'claude-3.5-sonnet', base_provider = 'Anthropic', best_provider = IterListProvider([Blackbox, AmigoChat, Liaobots]) ) claude_3_5_haiku = Model( name = 'claude-3.5-haiku', base_provider = 'Anthropic', best_provider = AmigoChat ) ### Reka AI ### reka_core = Model( name = 'reka-core', base_provider = 'Reka AI', best_provider = Reka ) ### Blackbox AI ### blackboxai = Model( name = 'blackboxai', base_provider = 'Blackbox AI', best_provider = Blackbox ) blackboxai_pro = Model( name = 'blackboxai-pro', base_provider = 'Blackbox AI', best_provider = Blackbox ) ### CohereForAI ### command_r_plus = Model( name = 'command-r-plus', base_provider = 'CohereForAI', best_provider = IterListProvider([HuggingChat, AmigoChat]) ) ### Qwen ### # qwen 1_5 qwen_1_5_7b = Model( name = 'qwen-1.5-7b', base_provider = 'Qwen', best_provider = Cloudflare ) # qwen 2 qwen_2_72b = Model( name = 'qwen-2-72b', base_provider = 'Qwen', best_provider = IterListProvider([DeepInfraChat, HuggingChat, HuggingFace]) ) # qwen 2.5 qwen_2_5_72b = Model( name = 'qwen-2.5-72b', base_provider = 'Qwen', best_provider = IterListProvider([AmigoChat, HuggingChat, HuggingFace]) ) qwen_2_5_coder_32b = Model( name = 'qwen-2.5-coder-32b', base_provider = 'Qwen', best_provider = IterListProvider([DeepInfraChat, HuggingChat, HuggingFace]) ) qwq_32b = Model( name = 'qwq-32b', base_provider = 'Qwen', best_provider = IterListProvider([DeepInfraChat, HuggingChat, HuggingFace]) ) ### Upstage ### solar_mini = Model( name = 'solar-mini', base_provider = 'Upstage', best_provider = Upstage ) solar_pro = Model( name = 'solar-pro', base_provider = 'Upstage', best_provider = Upstage ) ### Inflection ### pi = Model( name = 'pi', base_provider = 'Inflection', best_provider = Pi ) ### DeepSeek ### deepseek_chat = Model( name = 'deepseek-chat', base_provider = 'DeepSeek', best_provider = AmigoChat ) deepseek_coder = Model( name = 'deepseek-coder', base_provider = 'DeepSeek', best_provider = Airforce ) ### WizardLM ### wizardlm_2_8x22b = Model( name = 'wizardlm-2-8x22b', base_provider = 'WizardLM', best_provider = DeepInfraChat ) ### Yorickvp ### llava_13b = Model( name = 'llava-13b', base_provider = 'Yorickvp', best_provider = ReplicateHome ) ### OpenChat ### openchat_3_5 = Model( name = 'openchat-3.5', base_provider = 'OpenChat', best_provider = Airforce ) ### x.ai ### grok_2 = Model( name = 'grok-2', base_provider = 'x.ai', best_provider = Liaobots ) grok_2_mini = Model( name = 'grok-2-mini', base_provider = 'x.ai', best_provider = Liaobots ) grok_beta = Model( name = 'grok-beta', base_provider = 'x.ai', best_provider = IterListProvider([AmigoChat, Liaobots]) ) ### Perplexity AI ### sonar_online = Model( name = 'sonar-online', base_provider = 'Perplexity AI', best_provider = PerplexityLabs ) sonar_chat = Model( name = 'sonar-chat', base_provider = 'Perplexity AI', best_provider = PerplexityLabs ) ### Nvidia ### nemotron_70b = Model( name = 'nemotron-70b', base_provider = 'Nvidia', best_provider = IterListProvider([DeepInfraChat, HuggingChat, HuggingFace]) ) ### Teknium ### openhermes_2_5 = Model( name = 'openhermes-2.5', base_provider = 'Teknium', best_provider = Airforce ) ### Liquid ### lfm_40b = Model( name = 'lfm-40b', base_provider = 'Liquid', best_provider = IterListProvider([Airforce, PerplexityLabs]) ) ### DiscoResearch ### german_7b = Model( name = 'german-7b', base_provider = 'DiscoResearch', best_provider = Airforce ) ### HuggingFaceH4 ### zephyr_7b = Model( name = 'zephyr-7b', base_provider = 'HuggingFaceH4', best_provider = Airforce ) ### Inferless ### neural_7b = Model( name = 'neural-7b', base_provider = 'inferless', best_provider = Airforce ) ### Gryphe ### mythomax_13b = Model( name = 'mythomax-13b', base_provider = 'Gryphe', best_provider = AmigoChat ) ### databricks ### dbrx_instruct = Model( name = 'dbrx-instruct', base_provider = 'databricks', best_provider = AmigoChat ) ### anthracite-org ### magnum_72b = Model( name = 'magnum-72b', base_provider = 'anthracite-org', best_provider = AmigoChat ) ### ai21 ### jamba_mini = Model( name = 'jamba-mini', base_provider = 'ai21', best_provider = AmigoChat ) ### llmplayground.net ### any_uncensored = Model( name = 'any-uncensored', base_provider = 'llmplayground.net', best_provider = Airforce ) ############# ### Image ### ############# ### Stability AI ### sdxl = Model( name = 'sdxl', base_provider = 'Stability AI', best_provider = IterListProvider([ReplicateHome, Airforce]) ) sd_3 = Model( name = 'sd-3', base_provider = 'Stability AI', best_provider = ReplicateHome ) ### Playground ### playground_v2_5 = Model( name = 'playground-v2.5', base_provider = 'Playground AI', best_provider = ReplicateHome ) ### Flux AI ### flux = Model( name = 'flux', base_provider = 'Flux AI', best_provider = IterListProvider([Blackbox, Airforce]) ) flux_pro = Model( name = 'flux-pro', base_provider = 'Flux AI', best_provider = Airforce ) flux_dev = Model( name = 'flux-dev', base_provider = 'Flux AI', best_provider = AmigoChat ) flux_realism = Model( name = 'flux-realism', base_provider = 'Flux AI', best_provider = IterListProvider([Airforce, AmigoChat]) ) flux_anime = Model( name = 'flux-anime', base_provider = 'Flux AI', best_provider = Airforce ) flux_3d = Model( name = 'flux-3d', base_provider = 'Flux AI', best_provider = Airforce ) flux_disney = Model( name = 'flux-disney', base_provider = 'Flux AI', best_provider = Airforce ) flux_pixel = Model( name = 'flux-pixel', base_provider = 'Flux AI', best_provider = Airforce ) flux_4o = Model( name = 'flux-4o', base_provider = 'Flux AI', best_provider = Airforce ) ### OpenAI ### dall_e_3 = Model( name = 'dall-e-3', base_provider = 'OpenAI', best_provider = IterListProvider([Airforce, CopilotAccount, OpenaiAccount, MicrosoftDesigner, BingCreateImages]) ) ### Recraft ### recraft_v3 = Model( name = 'recraft-v3', base_provider = 'Recraft', best_provider = AmigoChat ) ### Other ### any_dark = Model( name = 'any-dark', base_provider = 'Other', best_provider = Airforce ) class ModelUtils: """ Utility class for mapping string identifiers to Model instances. Attributes: convert (dict[str, Model]): Dictionary mapping model string identifiers to Model instances. """ convert: dict[str, Model] = { ############ ### Text ### ############ ### OpenAI ### # gpt-3 'gpt-3': gpt_35_turbo, # gpt-3.5 'gpt-3.5-turbo': gpt_35_turbo, # gpt-4 'gpt-4o': gpt_4o, 'gpt-4o-mini': gpt_4o_mini, 'gpt-4': gpt_4, 'gpt-4-turbo': gpt_4_turbo, # o1 'o1-preview': o1_preview, 'o1-mini': o1_mini, ### Meta ### "meta-ai": meta, # llama-2 'llama-2-7b': llama_2_7b, # llama-3 'llama-3-8b': llama_3_8b, # llama-3.1 'llama-3.1-8b': llama_3_1_8b, 'llama-3.1-70b': llama_3_1_70b, 'llama-3.1-405b': llama_3_1_405b, # llama-3.2 'llama-3.2-1b': llama_3_2_1b, 'llama-3.2-11b': llama_3_2_11b, 'llama-3.2-90b': llama_3_2_90b, # CodeLlama 'codellama-34b': codellama_34b, ### Mistral ### 'mixtral-7b': mixtral_7b, 'mixtral-8x7b': mixtral_8x7b, 'mistral-tiny': mistral_tiny, 'mistral-nemo': mistral_nemo, ### NousResearch ### 'mixtral-8x7b-dpo': mixtral_8x7b_dpo, 'hermes-2-dpo': hermes_2_dpo, 'hermes-2-pro': hermes_2_pro, 'hermes-3': hermes_3, ### Microsoft ### 'phi-2': phi_2, 'phi-3.5-mini': phi_3_5_mini, ### Google ### # gemini 'gemini': gemini, 'gemini-pro': gemini_pro, 'gemini-flash': gemini_flash, # gemma 'gemma-2b': gemma_2b, ### Anthropic ### # claude 3 'claude-3-opus': claude_3_opus, 'claude-3-sonnet': claude_3_sonnet, 'claude-3-haiku': claude_3_haiku, # claude 3.5 'claude-3.5-sonnet': claude_3_5_sonnet, 'claude-3.5-haiku': claude_3_5_haiku, ### Reka AI ### 'reka-core': reka_core, ### Blackbox AI ### 'blackboxai': blackboxai, 'blackboxai-pro': blackboxai_pro, ### CohereForAI ### 'command-r+': command_r_plus, ### GigaChat ### 'gigachat': gigachat, ### Qwen ### # qwen 1_5 'qwen-1.5-7b': qwen_1_5_7b, # qwen 2 'qwen-2-72b': qwen_2_72b, # qwen 2.5 'qwen-2.5-72b': qwen_2_5_72b, 'qwen-2.5-coder-32b': qwen_2_5_coder_32b, 'qwq-32b': qwq_32b, ### Upstage ### 'solar-mini': solar_mini, 'solar-pro': solar_pro, ### Inflection ### 'pi': pi, ### Yorickvp ### 'llava-13b': llava_13b, ### WizardLM ### 'wizardlm-2-8x22b': wizardlm_2_8x22b, ### OpenChat ### 'openchat-3.5': openchat_3_5, ### x.ai ### 'grok-2': grok_2, 'grok-2-mini': grok_2_mini, 'grok-beta': grok_beta, ### Perplexity AI ### 'sonar-online': sonar_online, 'sonar-chat': sonar_chat, ### DeepSeek ### 'deepseek-chat': deepseek_chat, 'deepseek-coder': deepseek_coder, ### TheBloke ### 'german-7b': german_7b, ### Nvidia ### 'nemotron-70b': nemotron_70b, ### Teknium ### 'openhermes-2.5': openhermes_2_5, ### Liquid ### 'lfm-40b': lfm_40b, ### databricks ### 'dbrx-instruct': dbrx_instruct, ### anthracite-org ### 'magnum-72b': magnum_72b, ### anthracite-org ### 'jamba-mini': jamba_mini, ### HuggingFaceH4 ### 'zephyr-7b': zephyr_7b, ### Inferless ### 'neural-7b': neural_7b, ### Gryphe ### 'mythomax-13b': mythomax_13b, ### llmplayground.net ### 'any-uncensored': any_uncensored, ############# ### Image ### ############# ### Stability AI ### 'sdxl': sdxl, 'sd-3': sd_3, ### Playground ### 'playground-v2.5': playground_v2_5, ### Flux AI ### 'flux': flux, 'flux-pro': flux_pro, 'flux-dev': flux_dev, 'flux-realism': flux_realism, 'flux-anime': flux_anime, 'flux-3d': flux_3d, 'flux-disney': flux_disney, 'flux-pixel': flux_pixel, 'flux-4o': flux_4o, ### OpenAI ### 'dall-e-3': dall_e_3, ### Recraft ### 'recraft-v3': recraft_v3, ### Other ### 'any-dark': any_dark, } _all_models = list(ModelUtils.convert.keys())