// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "clipper.h"
#include "command_processor.h"
#include "math.h"
#include "pica.h"
#include "primitive_assembly.h"
#include "vertex_shader.h"
#include "debug_utils/debug_utils.h"
namespace Pica {
Regs registers;
namespace CommandProcessor {
static int float_regs_counter = 0;
static u32 uniform_write_buffer[4];
// Used for VSLoadProgramData and VSLoadSwizzleData
static u32 vs_binary_write_offset = 0;
static u32 vs_swizzle_write_offset = 0;
static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
if (id >= registers.NumIds())
return;
// TODO: Figure out how register masking acts on e.g. vs_uniform_setup.set_value
u32 old_value = registers[id];
registers[id] = (old_value & ~mask) | (value & mask);
DebugUtils::OnPicaRegWrite(id, registers[id]);
switch(id) {
// It seems like these trigger vertex rendering
case PICA_REG_INDEX(trigger_draw):
case PICA_REG_INDEX(trigger_draw_indexed):
{
DebugUtils::DumpTevStageConfig(registers.GetTevStages());
const auto& attribute_config = registers.vertex_attributes;
const u8* const base_address = Memory::GetPointer(attribute_config.GetBaseAddress());
// Information about internal vertex attributes
const u8* vertex_attribute_sources[16];
u32 vertex_attribute_strides[16];
u32 vertex_attribute_formats[16];
u32 vertex_attribute_elements[16];
u32 vertex_attribute_element_size[16];
// Setup attribute data from loaders
for (int loader = 0; loader < 12; ++loader) {
const auto& loader_config = attribute_config.attribute_loaders[loader];
const u8* load_address = base_address + loader_config.data_offset;
// TODO: What happens if a loader overwrites a previous one's data?
for (int component = 0; component < loader_config.component_count; ++component) {
u32 attribute_index = loader_config.GetComponent(component);
vertex_attribute_sources[attribute_index] = load_address;
vertex_attribute_strides[attribute_index] = static_cast<u32>(loader_config.byte_count);
vertex_attribute_formats[attribute_index] = static_cast<u32>(attribute_config.GetFormat(attribute_index));
vertex_attribute_elements[attribute_index] = attribute_config.GetNumElements(attribute_index);
vertex_attribute_element_size[attribute_index] = attribute_config.GetElementSizeInBytes(attribute_index);
load_address += attribute_config.GetStride(attribute_index);
}
}
// Load vertices
bool is_indexed = (id == PICA_REG_INDEX(trigger_draw_indexed));
const auto& index_info = registers.index_array;
const u8* index_address_8 = (u8*)base_address + index_info.offset;
const u16* index_address_16 = (u16*)index_address_8;
bool index_u16 = (bool)index_info.format;
DebugUtils::GeometryDumper geometry_dumper;
PrimitiveAssembler<VertexShader::OutputVertex> clipper_primitive_assembler(registers.triangle_topology.Value());
PrimitiveAssembler<DebugUtils::GeometryDumper::Vertex> dumping_primitive_assembler(registers.triangle_topology.Value());
for (unsigned int index = 0; index < registers.num_vertices; ++index)
{
unsigned int vertex = is_indexed ? (index_u16 ? index_address_16[index] : index_address_8[index]) : index;
if (is_indexed) {
// TODO: Implement some sort of vertex cache!
}
// Initialize data for the current vertex
VertexShader::InputVertex input;
for (int i = 0; i < attribute_config.GetNumTotalAttributes(); ++i) {
for (unsigned int comp = 0; comp < vertex_attribute_elements[i]; ++comp) {
const u8* srcdata = vertex_attribute_sources[i] + vertex_attribute_strides[i] * vertex + comp * vertex_attribute_element_size[i];
const float srcval = (vertex_attribute_formats[i] == 0) ? *(s8*)srcdata :
(vertex_attribute_formats[i] == 1) ? *(u8*)srcdata :
(vertex_attribute_formats[i] == 2) ? *(s16*)srcdata :
*(float*)srcdata;
input.attr[i][comp] = float24::FromFloat32(srcval);
DEBUG_LOG(GPU, "Loaded component %x of attribute %x for vertex %x (index %x) from 0x%08x + 0x%08x + 0x%04x: %f",
comp, i, vertex, index,
attribute_config.GetBaseAddress(),
vertex_attribute_sources[i] - base_address,
srcdata - vertex_attribute_sources[i],
input.attr[i][comp].ToFloat32());
}
}
// NOTE: When dumping geometry, we simply assume that the first input attribute
// corresponds to the position for now.
DebugUtils::GeometryDumper::Vertex dumped_vertex = {
input.attr[0][0].ToFloat32(), input.attr[0][1].ToFloat32(), input.attr[0][2].ToFloat32()
};
using namespace std::placeholders;
dumping_primitive_assembler.SubmitVertex(dumped_vertex,
std::bind(&DebugUtils::GeometryDumper::AddTriangle,
&geometry_dumper, _1, _2, _3));
// Send to vertex shader
VertexShader::OutputVertex output = VertexShader::RunShader(input, attribute_config.GetNumTotalAttributes());
if (is_indexed) {
// TODO: Add processed vertex to vertex cache!
}
// Send to triangle clipper
clipper_primitive_assembler.SubmitVertex(output, Clipper::ProcessTriangle);
}
geometry_dumper.Dump();
break;
}
case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[0], 0x2c1):
case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[1], 0x2c2):
case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[2], 0x2c3):
case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[3], 0x2c4):
case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[4], 0x2c5):
case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[5], 0x2c6):
case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[6], 0x2c7):
case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[7], 0x2c8):
{
auto& uniform_setup = registers.vs_uniform_setup;
// TODO: Does actual hardware indeed keep an intermediate buffer or does
// it directly write the values?
uniform_write_buffer[float_regs_counter++] = value;
// Uniforms are written in a packed format such that 4 float24 values are encoded in
// three 32-bit numbers. We write to internal memory once a full such vector is
// written.
if ((float_regs_counter >= 4 && uniform_setup.IsFloat32()) ||
(float_regs_counter >= 3 && !uniform_setup.IsFloat32())) {
float_regs_counter = 0;
auto& uniform = VertexShader::GetFloatUniform(uniform_setup.index);
if (uniform_setup.index > 95) {
ERROR_LOG(GPU, "Invalid VS uniform index %d", (int)uniform_setup.index);
break;
}
// NOTE: The destination component order indeed is "backwards"
if (uniform_setup.IsFloat32()) {
for (auto i : {0,1,2,3})
uniform[3 - i] = float24::FromFloat32(*(float*)(&uniform_write_buffer[i]));
} else {
// TODO: Untested
uniform.w = float24::FromRawFloat24(uniform_write_buffer[0] >> 8);
uniform.z = float24::FromRawFloat24(((uniform_write_buffer[0] & 0xFF)<<16) | ((uniform_write_buffer[1] >> 16) & 0xFFFF));
uniform.y = float24::FromRawFloat24(((uniform_write_buffer[1] & 0xFFFF)<<8) | ((uniform_write_buffer[2] >> 24) & 0xFF));
uniform.x = float24::FromRawFloat24(uniform_write_buffer[2] & 0xFFFFFF);
}
DEBUG_LOG(GPU, "Set uniform %x to (%f %f %f %f)", (int)uniform_setup.index,
uniform.x.ToFloat32(), uniform.y.ToFloat32(), uniform.z.ToFloat32(),
uniform.w.ToFloat32());
// TODO: Verify that this actually modifies the register!
uniform_setup.index = uniform_setup.index + 1;
}
break;
}
// Seems to be used to reset the write pointer for VSLoadProgramData
case PICA_REG_INDEX(vs_program.begin_load):
vs_binary_write_offset = 0;
break;
// Load shader program code
case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[0], 0x2cc):
case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[1], 0x2cd):
case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[2], 0x2ce):
case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[3], 0x2cf):
case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[4], 0x2d0):
case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[5], 0x2d1):
case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[6], 0x2d2):
case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[7], 0x2d3):
{
VertexShader::SubmitShaderMemoryChange(vs_binary_write_offset, value);
vs_binary_write_offset++;
break;
}
// Seems to be used to reset the write pointer for VSLoadSwizzleData
case PICA_REG_INDEX(vs_swizzle_patterns.begin_load):
vs_swizzle_write_offset = 0;
break;
// Load swizzle pattern data
case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[0], 0x2d6):
case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[1], 0x2d7):
case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[2], 0x2d8):
case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[3], 0x2d9):
case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[4], 0x2da):
case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[5], 0x2db):
case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[6], 0x2dc):
case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[7], 0x2dd):
{
VertexShader::SubmitSwizzleDataChange(vs_swizzle_write_offset, value);
vs_swizzle_write_offset++;
break;
}
default:
break;
}
}
static std::ptrdiff_t ExecuteCommandBlock(const u32* first_command_word) {
const CommandHeader& header = *(const CommandHeader*)(&first_command_word[1]);
u32* read_pointer = (u32*)first_command_word;
const u32 write_mask = ((header.parameter_mask & 0x1) ? (0xFFu << 0) : 0u) |
((header.parameter_mask & 0x2) ? (0xFFu << 8) : 0u) |
((header.parameter_mask & 0x4) ? (0xFFu << 16) : 0u) |
((header.parameter_mask & 0x8) ? (0xFFu << 24) : 0u);
WritePicaReg(header.cmd_id, *read_pointer, write_mask);
read_pointer += 2;
for (unsigned int i = 1; i < 1+header.extra_data_length; ++i) {
u32 cmd = header.cmd_id + ((header.group_commands) ? i : 0);
WritePicaReg(cmd, *read_pointer, write_mask);
++read_pointer;
}
// align read pointer to 8 bytes
if ((first_command_word - read_pointer) % 2)
++read_pointer;
return read_pointer - first_command_word;
}
void ProcessCommandList(const u32* list, u32 size) {
u32* read_pointer = (u32*)list;
while (read_pointer < list + size) {
read_pointer += ExecuteCommandBlock(read_pointer);
}
}
} // namespace
} // namespace