diff options
author | Rodrigo Locatti <reinuseslisp@airmail.cc> | 2021-03-31 00:31:52 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-03-31 00:31:52 +0200 |
commit | 5ee669466fcebd2258229ed6bfe6b5e5529e0200 (patch) | |
tree | 6dbf84fb5c2c9656f1d1ef6c46b2527ea1a205ff | |
parent | Merge pull request #6116 from german77/userArgument (diff) | |
parent | astc_decoder: Refactor for style and more efficient memory use (diff) | |
download | yuzu-5ee669466fcebd2258229ed6bfe6b5e5529e0200.tar yuzu-5ee669466fcebd2258229ed6bfe6b5e5529e0200.tar.gz yuzu-5ee669466fcebd2258229ed6bfe6b5e5529e0200.tar.bz2 yuzu-5ee669466fcebd2258229ed6bfe6b5e5529e0200.tar.lz yuzu-5ee669466fcebd2258229ed6bfe6b5e5529e0200.tar.xz yuzu-5ee669466fcebd2258229ed6bfe6b5e5529e0200.tar.zst yuzu-5ee669466fcebd2258229ed6bfe6b5e5529e0200.zip |
22 files changed, 2027 insertions, 1770 deletions
diff --git a/src/video_core/CMakeLists.txt b/src/video_core/CMakeLists.txt index 9b931976a..47190c464 100644 --- a/src/video_core/CMakeLists.txt +++ b/src/video_core/CMakeLists.txt @@ -236,7 +236,6 @@ add_library(video_core STATIC texture_cache/types.h texture_cache/util.cpp texture_cache/util.h - textures/astc.cpp textures/astc.h textures/decoders.cpp textures/decoders.h diff --git a/src/video_core/host_shaders/CMakeLists.txt b/src/video_core/host_shaders/CMakeLists.txt index 3494318ca..2208e1922 100644 --- a/src/video_core/host_shaders/CMakeLists.txt +++ b/src/video_core/host_shaders/CMakeLists.txt @@ -1,4 +1,5 @@ set(SHADER_FILES + astc_decoder.comp block_linear_unswizzle_2d.comp block_linear_unswizzle_3d.comp convert_depth_to_float.frag diff --git a/src/video_core/host_shaders/StringShaderHeader.cmake b/src/video_core/host_shaders/StringShaderHeader.cmake index c0fc49768..1b4bc6103 100644 --- a/src/video_core/host_shaders/StringShaderHeader.cmake +++ b/src/video_core/host_shaders/StringShaderHeader.cmake @@ -6,7 +6,27 @@ get_filename_component(CONTENTS_NAME ${SOURCE_FILE} NAME) string(REPLACE "." "_" CONTENTS_NAME ${CONTENTS_NAME}) string(TOUPPER ${CONTENTS_NAME} CONTENTS_NAME) -file(READ ${SOURCE_FILE} CONTENTS) +FILE(READ ${SOURCE_FILE} line_contents) + +# Replace double quotes with single quotes, +# as double quotes will be used to wrap the lines +STRING(REGEX REPLACE "\"" "'" line_contents "${line_contents}") + +# CMake separates list elements with semicolons, but semicolons +# are used extensively in the shader code. +# Replace with a temporary marker, to be reverted later. +STRING(REGEX REPLACE ";" "{{SEMICOLON}}" line_contents "${line_contents}") + +# Make every line an individual element in the CMake list. +STRING(REGEX REPLACE "\n" ";" line_contents "${line_contents}") + +# Build the shader string, wrapping each line in double quotes. +foreach(line IN LISTS line_contents) + string(CONCAT CONTENTS "${CONTENTS}" \"${line}\\n\"\n) +endforeach() + +# Revert the original semicolons in the source. +STRING(REGEX REPLACE "{{SEMICOLON}}" ";" CONTENTS "${CONTENTS}") get_filename_component(OUTPUT_DIR ${HEADER_FILE} DIRECTORY) make_directory(${OUTPUT_DIR}) diff --git a/src/video_core/host_shaders/astc_decoder.comp b/src/video_core/host_shaders/astc_decoder.comp new file mode 100644 index 000000000..703e34587 --- /dev/null +++ b/src/video_core/host_shaders/astc_decoder.comp @@ -0,0 +1,1339 @@ +// Copyright 2021 yuzu Emulator Project +// Licensed under GPLv2 or any later version +// Refer to the license.txt file included. + +#version 450 + +#ifdef VULKAN + +#define BEGIN_PUSH_CONSTANTS layout(push_constant) uniform PushConstants { +#define END_PUSH_CONSTANTS }; +#define UNIFORM(n) +#define BINDING_INPUT_BUFFER 0 +#define BINDING_ENC_BUFFER 1 +#define BINDING_6_TO_8_BUFFER 2 +#define BINDING_7_TO_8_BUFFER 3 +#define BINDING_8_TO_8_BUFFER 4 +#define BINDING_BYTE_TO_16_BUFFER 5 +#define BINDING_SWIZZLE_BUFFER 6 +#define BINDING_OUTPUT_IMAGE 7 + +#else // ^^^ Vulkan ^^^ // vvv OpenGL vvv + +#define BEGIN_PUSH_CONSTANTS +#define END_PUSH_CONSTANTS +#define UNIFORM(n) layout(location = n) uniform +#define BINDING_SWIZZLE_BUFFER 0 +#define BINDING_INPUT_BUFFER 1 +#define BINDING_ENC_BUFFER 2 +#define BINDING_6_TO_8_BUFFER 3 +#define BINDING_7_TO_8_BUFFER 4 +#define BINDING_8_TO_8_BUFFER 5 +#define BINDING_BYTE_TO_16_BUFFER 6 +#define BINDING_OUTPUT_IMAGE 0 + +#endif + +layout(local_size_x = 32, local_size_y = 32, local_size_z = 1) in; + +BEGIN_PUSH_CONSTANTS +UNIFORM(1) uvec2 block_dims; + +UNIFORM(2) uint bytes_per_block_log2; +UNIFORM(3) uint layer_stride; +UNIFORM(4) uint block_size; +UNIFORM(5) uint x_shift; +UNIFORM(6) uint block_height; +UNIFORM(7) uint block_height_mask; +END_PUSH_CONSTANTS + +struct EncodingData { + uint encoding; + uint num_bits; + uint bit_value; + uint quint_trit_value; +}; + +struct TexelWeightParams { + uvec2 size; + uint max_weight; + bool dual_plane; + bool error_state; + bool void_extent_ldr; + bool void_extent_hdr; +}; + +// Swizzle data +layout(binding = BINDING_SWIZZLE_BUFFER, std430) readonly buffer SwizzleTable { + uint swizzle_table[]; +}; + +layout(binding = BINDING_INPUT_BUFFER, std430) readonly buffer InputBufferU32 { + uint astc_data[]; +}; + +// ASTC Encodings data +layout(binding = BINDING_ENC_BUFFER, std430) readonly buffer EncodingsValues { + EncodingData encoding_values[]; +}; +// ASTC Precompiled tables +layout(binding = BINDING_6_TO_8_BUFFER, std430) readonly buffer REPLICATE_6_BIT_TO_8 { + uint REPLICATE_6_BIT_TO_8_TABLE[]; +}; +layout(binding = BINDING_7_TO_8_BUFFER, std430) readonly buffer REPLICATE_7_BIT_TO_8 { + uint REPLICATE_7_BIT_TO_8_TABLE[]; +}; +layout(binding = BINDING_8_TO_8_BUFFER, std430) readonly buffer REPLICATE_8_BIT_TO_8 { + uint REPLICATE_8_BIT_TO_8_TABLE[]; +}; +layout(binding = BINDING_BYTE_TO_16_BUFFER, std430) readonly buffer REPLICATE_BYTE_TO_16 { + uint REPLICATE_BYTE_TO_16_TABLE[]; +}; + +layout(binding = BINDING_OUTPUT_IMAGE, rgba8) uniform writeonly image2DArray dest_image; + +const uint GOB_SIZE_X = 64; +const uint GOB_SIZE_Y = 8; +const uint GOB_SIZE_Z = 1; +const uint GOB_SIZE = GOB_SIZE_X * GOB_SIZE_Y * GOB_SIZE_Z; + +const uint GOB_SIZE_X_SHIFT = 6; +const uint GOB_SIZE_Y_SHIFT = 3; +const uint GOB_SIZE_Z_SHIFT = 0; +const uint GOB_SIZE_SHIFT = GOB_SIZE_X_SHIFT + GOB_SIZE_Y_SHIFT + GOB_SIZE_Z_SHIFT; + +const uvec2 SWIZZLE_MASK = uvec2(GOB_SIZE_X - 1, GOB_SIZE_Y - 1); + +const int BLOCK_SIZE_IN_BYTES = 16; + +const int BLOCK_INFO_ERROR = 0; +const int BLOCK_INFO_VOID_EXTENT_HDR = 1; +const int BLOCK_INFO_VOID_EXTENT_LDR = 2; +const int BLOCK_INFO_NORMAL = 3; + +const int JUST_BITS = 0; +const int QUINT = 1; +const int TRIT = 2; + +// The following constants are expanded variants of the Replicate() +// function calls corresponding to the following arguments: +// value: index into the generated table +// num_bits: the after "REPLICATE" in the table name. i.e. 4 is num_bits in REPLICATE_4. +// to_bit: the integer after "TO_" +const uint REPLICATE_BIT_TO_7_TABLE[2] = uint[](0, 127); +const uint REPLICATE_1_BIT_TO_9_TABLE[2] = uint[](0, 511); + +const uint REPLICATE_1_BIT_TO_8_TABLE[2] = uint[](0, 255); +const uint REPLICATE_2_BIT_TO_8_TABLE[4] = uint[](0, 85, 170, 255); +const uint REPLICATE_3_BIT_TO_8_TABLE[8] = uint[](0, 36, 73, 109, 146, 182, 219, 255); +const uint REPLICATE_4_BIT_TO_8_TABLE[16] = + uint[](0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255); +const uint REPLICATE_5_BIT_TO_8_TABLE[32] = + uint[](0, 8, 16, 24, 33, 41, 49, 57, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165, + 173, 181, 189, 198, 206, 214, 222, 231, 239, 247, 255); +const uint REPLICATE_1_BIT_TO_6_TABLE[2] = uint[](0, 63); +const uint REPLICATE_2_BIT_TO_6_TABLE[4] = uint[](0, 21, 42, 63); +const uint REPLICATE_3_BIT_TO_6_TABLE[8] = uint[](0, 9, 18, 27, 36, 45, 54, 63); +const uint REPLICATE_4_BIT_TO_6_TABLE[16] = + uint[](0, 4, 8, 12, 17, 21, 25, 29, 34, 38, 42, 46, 51, 55, 59, 63); +const uint REPLICATE_5_BIT_TO_6_TABLE[32] = + uint[](0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 45, + 47, 49, 51, 53, 55, 57, 59, 61, 63); + +// Input ASTC texture globals +uint current_index = 0; +int bitsread = 0; +uint total_bitsread = 0; +uint local_buff[16]; + +// Color data globals +uint color_endpoint_data[16]; +int color_bitsread = 0; +uint total_color_bitsread = 0; +int color_index = 0; + +// Four values, two endpoints, four maximum paritions +uint color_values[32]; +int colvals_index = 0; + +// Weight data globals +uint texel_weight_data[16]; +int texel_bitsread = 0; +uint total_texel_bitsread = 0; +int texel_index = 0; + +bool texel_flag = false; + +// Global "vectors" to be pushed into when decoding +EncodingData result_vector[100]; +int result_index = 0; + +EncodingData texel_vector[100]; +int texel_vector_index = 0; + +uint unquantized_texel_weights[2][144]; + +uint SwizzleOffset(uvec2 pos) { + pos = pos & SWIZZLE_MASK; + return swizzle_table[pos.y * 64 + pos.x]; +} + +uint ReadTexel(uint offset) { + // extract the 8-bit value from the 32-bit packed data. + return bitfieldExtract(astc_data[offset / 4], int((offset * 8) & 24), 8); +} + +// Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)] +// is the same as [(num_bits - 1):0] and repeats all the way down. +uint Replicate(uint val, uint num_bits, uint to_bit) { + if (num_bits == 0 || to_bit == 0) { + return 0; + } + const uint v = val & uint((1 << num_bits) - 1); + uint res = v; + uint reslen = num_bits; + while (reslen < to_bit) { + uint comp = 0; + if (num_bits > to_bit - reslen) { + uint newshift = to_bit - reslen; + comp = num_bits - newshift; + num_bits = newshift; + } + res = uint(res << num_bits); + res = uint(res | (v >> comp)); + reslen += num_bits; + } + return res; +} + +uvec4 ReplicateByteTo16(uvec4 value) { + return uvec4(REPLICATE_BYTE_TO_16_TABLE[value.x], REPLICATE_BYTE_TO_16_TABLE[value.y], + REPLICATE_BYTE_TO_16_TABLE[value.z], REPLICATE_BYTE_TO_16_TABLE[value.w]); +} + +uint ReplicateBitTo7(uint value) { + return REPLICATE_BIT_TO_7_TABLE[value]; +} + +uint ReplicateBitTo9(uint value) { + return REPLICATE_1_BIT_TO_9_TABLE[value]; +} + +uint FastReplicateTo8(uint value, uint num_bits) { + switch (num_bits) { + case 1: + return REPLICATE_1_BIT_TO_8_TABLE[value]; + case 2: + return REPLICATE_2_BIT_TO_8_TABLE[value]; + case 3: + return REPLICATE_3_BIT_TO_8_TABLE[value]; + case 4: + return REPLICATE_4_BIT_TO_8_TABLE[value]; + case 5: + return REPLICATE_5_BIT_TO_8_TABLE[value]; + case 6: + return REPLICATE_6_BIT_TO_8_TABLE[value]; + case 7: + return REPLICATE_7_BIT_TO_8_TABLE[value]; + case 8: + return REPLICATE_8_BIT_TO_8_TABLE[value]; + } + return Replicate(value, num_bits, 8); +} + +uint FastReplicateTo6(uint value, uint num_bits) { + switch (num_bits) { + case 1: + return REPLICATE_1_BIT_TO_6_TABLE[value]; + case 2: + return REPLICATE_2_BIT_TO_6_TABLE[value]; + case 3: + return REPLICATE_3_BIT_TO_6_TABLE[value]; + case 4: + return REPLICATE_4_BIT_TO_6_TABLE[value]; + case 5: + return REPLICATE_5_BIT_TO_6_TABLE[value]; + } + return Replicate(value, num_bits, 6); +} + +uint Div3Floor(uint v) { + return (v * 0x5556) >> 16; +} + +uint Div3Ceil(uint v) { + return Div3Floor(v + 2); +} + +uint Div5Floor(uint v) { + return (v * 0x3334) >> 16; +} + +uint Div5Ceil(uint v) { + return Div5Floor(v + 4); +} + +uint Hash52(uint p) { + p ^= p >> 15; + p -= p << 17; + p += p << 7; + p += p << 4; + p ^= p >> 5; + p += p << 16; + p ^= p >> 7; + p ^= p >> 3; + p ^= p << 6; + p ^= p >> 17; + return p; +} + +uint SelectPartition(uint seed, uint x, uint y, uint z, uint partition_count, bool small_block) { + if (partition_count == 1) { + return 0; + } + if (small_block) { + x <<= 1; + y <<= 1; + z <<= 1; + } + + seed += (partition_count - 1) * 1024; + + uint rnum = Hash52(uint(seed)); + uint seed1 = uint(rnum & 0xF); + uint seed2 = uint((rnum >> 4) & 0xF); + uint seed3 = uint((rnum >> 8) & 0xF); + uint seed4 = uint((rnum >> 12) & 0xF); + uint seed5 = uint((rnum >> 16) & 0xF); + uint seed6 = uint((rnum >> 20) & 0xF); + uint seed7 = uint((rnum >> 24) & 0xF); + uint seed8 = uint((rnum >> 28) & 0xF); + uint seed9 = uint((rnum >> 18) & 0xF); + uint seed10 = uint((rnum >> 22) & 0xF); + uint seed11 = uint((rnum >> 26) & 0xF); + uint seed12 = uint(((rnum >> 30) | (rnum << 2)) & 0xF); + + seed1 = (seed1 * seed1); + seed2 = (seed2 * seed2); + seed3 = (seed3 * seed3); + seed4 = (seed4 * seed4); + seed5 = (seed5 * seed5); + seed6 = (seed6 * seed6); + seed7 = (seed7 * seed7); + seed8 = (seed8 * seed8); + seed9 = (seed9 * seed9); + seed10 = (seed10 * seed10); + seed11 = (seed11 * seed11); + seed12 = (seed12 * seed12); + + int sh1, sh2, sh3; + if ((seed & 1) > 0) { + sh1 = (seed & 2) > 0 ? 4 : 5; + sh2 = (partition_count == 3) ? 6 : 5; + } else { + sh1 = (partition_count == 3) ? 6 : 5; + sh2 = (seed & 2) > 0 ? 4 : 5; + } + sh3 = (seed & 0x10) > 0 ? sh1 : sh2; + + seed1 = (seed1 >> sh1); + seed2 = (seed2 >> sh2); + seed3 = (seed3 >> sh1); + seed4 = (seed4 >> sh2); + seed5 = (seed5 >> sh1); + seed6 = (seed6 >> sh2); + seed7 = (seed7 >> sh1); + seed8 = (seed8 >> sh2); + seed9 = (seed9 >> sh3); + seed10 = (seed10 >> sh3); + seed11 = (seed11 >> sh3); + seed12 = (seed12 >> sh3); + + uint a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14); + uint b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10); + uint c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6); + uint d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2); + + a &= 0x3F; + b &= 0x3F; + c &= 0x3F; + d &= 0x3F; + + if (partition_count < 4) { + d = 0; + } + if (partition_count < 3) { + c = 0; + } + + if (a >= b && a >= c && a >= d) { + return 0; + } else if (b >= c && b >= d) { + return 1; + } else if (c >= d) { + return 2; + } else { + return 3; + } +} + +uint Select2DPartition(uint seed, uint x, uint y, uint partition_count, bool small_block) { + return SelectPartition(seed, x, y, 0, partition_count, small_block); +} + +uint ReadBit() { + if (current_index >= local_buff.length()) { + return 0; + } + uint bit = bitfieldExtract(local_buff[current_index], bitsread, 1); + ++bitsread; + ++total_bitsread; + if (bitsread == 8) { + ++current_index; + bitsread = 0; + } + return bit; +} + +uint StreamBits(uint num_bits) { + uint ret = 0; + for (uint i = 0; i < num_bits; i++) { + ret |= ((ReadBit() & 1) << i); + } + return ret; +} + +uint ReadColorBit() { + uint bit = 0; + if (texel_flag) { + bit = bitfieldExtract(texel_weight_data[texel_index], texel_bitsread, 1); + ++texel_bitsread; + ++total_texel_bitsread; + if (texel_bitsread == 8) { + ++texel_index; + texel_bitsread = 0; + } + } else { + bit = bitfieldExtract(color_endpoint_data[color_index], color_bitsread, 1); + ++color_bitsread; + ++total_color_bitsread; + if (color_bitsread == 8) { + ++color_index; + color_bitsread = 0; + } + } + return bit; +} + +uint StreamColorBits(uint num_bits) { + uint ret = 0; + for (uint i = 0; i < num_bits; i++) { + ret |= ((ReadColorBit() & 1) << i); + } + return ret; +} + +void ResultEmplaceBack(EncodingData val) { + if (texel_flag) { + texel_vector[texel_vector_index] = val; + ++texel_vector_index; + } else { + result_vector[result_index] = val; + ++result_index; + } +} + +// Returns the number of bits required to encode n_vals values. +uint GetBitLength(uint n_vals, uint encoding_index) { + uint total_bits = encoding_values[encoding_index].num_bits * n_vals; + if (encoding_values[encoding_index].encoding == TRIT) { + total_bits += Div5Ceil(n_vals * 8); + } else if (encoding_values[encoding_index].encoding == QUINT) { + total_bits += Div3Ceil(n_vals * 7); + } + return total_bits; +} + +uint GetNumWeightValues(uvec2 size, bool dual_plane) { + uint n_vals = size.x * size.y; + if (dual_plane) { + n_vals *= 2; + } + return n_vals; +} + +uint GetPackedBitSize(uvec2 size, bool dual_plane, uint max_weight) { + uint n_vals = GetNumWeightValues(size, dual_plane); + return GetBitLength(n_vals, max_weight); +} + +uint BitsBracket(uint bits, uint pos) { + return ((bits >> pos) & 1); +} + +uint BitsOp(uint bits, uint start, uint end) { + if (start == end) { + return BitsBracket(bits, start); + } else if (start > end) { + uint t = start; + start = end; + end = t; + } + + uint mask = (1 << (end - start + 1)) - 1; + return ((bits >> start) & mask); +} + +void DecodeQuintBlock(uint num_bits) { + uint m[3]; + uint q[3]; + uint Q; + m[0] = StreamColorBits(num_bits); + Q = StreamColorBits(3); + m[1] = StreamColorBits(num_bits); + Q |= StreamColorBits(2) << 3; + m[2] = StreamColorBits(num_bits); + Q |= StreamColorBits(2) << 5; + if (BitsOp(Q, 1, 2) == 3 && BitsOp(Q, 5, 6) == 0) { + q[0] = 4; + q[1] = 4; + q[2] = (BitsBracket(Q, 0) << 2) | ((BitsBracket(Q, 4) & ~BitsBracket(Q, 0)) << 1) | + (BitsBracket(Q, 3) & ~BitsBracket(Q, 0)); + } else { + uint C = 0; + if (BitsOp(Q, 1, 2) == 3) { + q[2] = 4; + C = (BitsOp(Q, 3, 4) << 3) | ((~BitsOp(Q, 5, 6) & 3) << 1) | BitsBracket(Q, 0); + } else { + q[2] = BitsOp(Q, 5, 6); + C = BitsOp(Q, 0, 4); + } + if (BitsOp(C, 0, 2) == 5) { + q[1] = 4; + q[0] = BitsOp(C, 3, 4); + } else { + q[1] = BitsOp(C, 3, 4); + q[0] = BitsOp(C, 0, 2); + } + } + for (uint i = 0; i < 3; i++) { + EncodingData val; + val.encoding = QUINT; + val.num_bits = num_bits; + val.bit_value = m[i]; + val.quint_trit_value = q[i]; + ResultEmplaceBack(val); + } +} + +void DecodeTritBlock(uint num_bits) { + uint m[5]; + uint t[5]; + uint T; + m[0] = StreamColorBits(num_bits); + T = StreamColorBits(2); + m[1] = StreamColorBits(num_bits); + T |= StreamColorBits(2) << 2; + m[2] = StreamColorBits(num_bits); + T |= StreamColorBits(1) << 4; + m[3] = StreamColorBits(num_bits); + T |= StreamColorBits(2) << 5; + m[4] = StreamColorBits(num_bits); + T |= StreamColorBits(1) << 7; + uint C = 0; + if (BitsOp(T, 2, 4) == 7) { + C = (BitsOp(T, 5, 7) << 2) | BitsOp(T, 0, 1); + t[4] = 2; + t[3] = 2; + } else { + C = BitsOp(T, 0, 4); + if (BitsOp(T, 5, 6) == 3) { + t[4] = 2; + t[3] = BitsBracket(T, 7); + } else { + t[4] = BitsBracket(T, 7); + t[3] = BitsOp(T, 5, 6); + } + } + if (BitsOp(C, 0, 1) == 3) { + t[2] = 2; + t[1] = BitsBracket(C, 4); + t[0] = (BitsBracket(C, 3) << 1) | (BitsBracket(C, 2) & ~BitsBracket(C, 3)); + } else if (BitsOp(C, 2, 3) == 3) { + t[2] = 2; + t[1] = 2; + t[0] = BitsOp(C, 0, 1); + } else { + t[2] = BitsBracket(C, 4); + t[1] = BitsOp(C, 2, 3); + t[0] = (BitsBracket(C, 1) << 1) | (BitsBracket(C, 0) & ~BitsBracket(C, 1)); + } + for (uint i = 0; i < 5; i++) { + EncodingData val; + val.encoding = TRIT; + val.num_bits = num_bits; + val.bit_value = m[i]; + val.quint_trit_value = t[i]; + ResultEmplaceBack(val); + } +} + +void DecodeIntegerSequence(uint max_range, uint num_values) { + EncodingData val = encoding_values[max_range]; + uint vals_decoded = 0; + while (vals_decoded < num_values) { + switch (val.encoding) { + case QUINT: + DecodeQuintBlock(val.num_bits); + vals_decoded += 3; + break; + case TRIT: + DecodeTritBlock(val.num_bits); + vals_decoded += 5; + break; + case JUST_BITS: + val.bit_value = StreamColorBits(val.num_bits); + ResultEmplaceBack(val); + vals_decoded++; + break; + } + } +} + +void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) { + uint num_values = 0; + for (uint i = 0; i < num_partitions; i++) { + num_values += ((modes[i] >> 2) + 1) << 1; + } + int range = 256; + while (--range > 0) { + EncodingData val = encoding_values[range]; + uint bit_length = GetBitLength(num_values, range); + if (bit_length <= color_data_bits) { + while (--range > 0) { + EncodingData newval = encoding_values[range]; + if (newval.encoding != val.encoding && newval.num_bits != val.num_bits) { + break; + } + } + ++range; + break; + } + } + DecodeIntegerSequence(range, num_values); + uint out_index = 0; + for (int itr = 0; itr < result_index; ++itr) { + if (out_index >= num_values) { + break; + } + EncodingData val = result_vector[itr]; + uint bitlen = val.num_bits; + uint bitval = val.bit_value; + uint A = 0, B = 0, C = 0, D = 0; + A = ReplicateBitTo9((bitval & 1)); + switch (val.encoding) { + case JUST_BITS: + color_values[out_index++] = FastReplicateTo8(bitval, bitlen); + break; + case TRIT: { + D = val.quint_trit_value; + switch (bitlen) { + case 1: + C = 204; + break; + case 2: { + C = 93; + uint b = (bitval >> 1) & 1; + B = (b << 8) | (b << 4) | (b << 2) | (b << 1); + break; + } + case 3: { + C = 44; + uint cb = (bitval >> 1) & 3; + B = (cb << 7) | (cb << 2) | cb; + break; + } + case 4: { + C = 22; + uint dcb = (bitval >> 1) & 7; + B = (dcb << 6) | dcb; + break; + } + case 5: { + C = 11; + uint edcb = (bitval >> 1) & 0xF; + B = (edcb << 5) | (edcb >> 2); + break; + } + case 6: { + C = 5; + uint fedcb = (bitval >> 1) & 0x1F; + B = (fedcb << 4) | (fedcb >> 4); + break; + } + } + break; + } + case QUINT: { + D = val.quint_trit_value; + switch (bitlen) { + case 1: + C = 113; + break; + case 2: { + C = 54; + uint b = (bitval >> 1) & 1; + B = (b << 8) | (b << 3) | (b << 2); + break; + } + case 3: { + C = 26; + uint cb = (bitval >> 1) & 3; + B = (cb << 7) | (cb << 1) | (cb >> 1); + break; + } + case 4: { + C = 13; + uint dcb = (bitval >> 1) & 7; + B = (dcb << 6) | (dcb >> 1); + break; + } + case 5: { + C = 6; + uint edcb = (bitval >> 1) & 0xF; + B = (edcb << 5) | (edcb >> 3); + break; + } + } + break; + } + } + if (val.encoding != JUST_BITS) { + uint T = (D * C) + B; + T ^= A; + T = (A & 0x80) | (T >> 2); + color_values[out_index++] = T; + } + } +} + +ivec2 BitTransferSigned(int a, int b) { + ivec2 transferred; + transferred.y = b >> 1; + transferred.y |= a & 0x80; + transferred.x = a >> 1; + transferred.x &= 0x3F; + if ((transferred.x & 0x20) > 0) { + transferred.x -= 0x40; + } + return transferred; +} + +uvec4 ClampByte(ivec4 color) { + for (uint i = 0; i < 4; ++i) { + color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]); + } + return uvec4(color); +} + +ivec4 BlueContract(int a, int r, int g, int b) { + return ivec4(a, (r + b) >> 1, (g + b) >> 1, b); +} + +void ComputeEndpoints(out uvec4 ep1, out uvec4 ep2, uint color_endpoint_mode) { +#define READ_UINT_VALUES(N) \ + uint v[N]; \ + for (uint i = 0; i < N; i++) { \ + v[i] = color_values[colvals_index++]; \ + } + +#define READ_INT_VALUES(N) \ + int v[N]; \ + for (uint i = 0; i < N; i++) { \ + v[i] = int(color_values[colvals_index++]); \ + } + + switch (color_endpoint_mode) { + case 0: { + READ_UINT_VALUES(2) + ep1 = uvec4(0xFF, v[0], v[0], v[0]); + ep2 = uvec4(0xFF, v[1], v[1], v[1]); + break; + } + case 1: { + READ_UINT_VALUES(2) + uint L0 = (v[0] >> 2) | (v[1] & 0xC0); + uint L1 = max(L0 + (v[1] & 0x3F), 0xFFU); + ep1 = uvec4(0xFF, L0, L0, L0); + ep2 = uvec4(0xFF, L1, L1, L1); + break; + } + case 4: { + READ_UINT_VALUES(4) + ep1 = uvec4(v[2], v[0], v[0], v[0]); + ep2 = uvec4(v[3], v[1], v[1], v[1]); + break; + } + case 5: { + READ_INT_VALUES(4) + ivec2 transferred = BitTransferSigned(v[1], v[0]); + v[1] = transferred.x; + v[0] = transferred.y; + transferred = BitTransferSigned(v[3], v[2]); + v[3] = transferred.x; + v[2] = transferred.y; + ep1 = ClampByte(ivec4(v[2], v[0], v[0], v[0])); + ep2 = ClampByte(ivec4(v[2] + v[3], v[0] + v[1], v[0] + v[1], v[0] + v[1])); + break; + } + case 6: { + READ_UINT_VALUES(4) + ep1 = uvec4(0xFF, (v[0] * v[3]) >> 8, (v[1] * v[3]) >> 8, (v[2] * v[3]) >> 8); + ep2 = uvec4(0xFF, v[0], v[1], v[2]); + break; + } + case 8: { + READ_UINT_VALUES(6) + if ((v[1] + v[3] + v[5]) >= (v[0] + v[2] + v[4])) { + ep1 = uvec4(0xFF, v[0], v[2], v[4]); + ep2 = uvec4(0xFF, v[1], v[3], v[5]); + } else { + ep1 = uvec4(BlueContract(0xFF, int(v[1]), int(v[3]), int(v[5]))); + ep2 = uvec4(BlueContract(0xFF, int(v[0]), int(v[2]), int(v[4]))); + } + break; + } + case 9: { + READ_INT_VALUES(6) + ivec2 transferred = BitTransferSigned(v[1], v[0]); + v[1] = transferred.x; + v[0] = transferred.y; + transferred = BitTransferSigned(v[3], v[2]); + v[3] = transferred.x; + v[2] = transferred.y; + transferred = BitTransferSigned(v[5], v[4]); + v[5] = transferred.x; + v[4] = transferred.y; + if ((v[1] + v[3] + v[5]) >= 0) { + ep1 = ClampByte(ivec4(0xFF, v[0], v[2], v[4])); + ep2 = ClampByte(ivec4(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5])); + } else { + ep1 = ClampByte(BlueContract(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5])); + ep2 = ClampByte(BlueContract(0xFF, v[0], v[2], v[4])); + } + break; + } + case 10: { + READ_UINT_VALUES(6) + ep1 = uvec4(v[4], (v[0] * v[3]) >> 8, (v[1] * v[3]) >> 8, (v[2] * v[3]) >> 8); + ep2 = uvec4(v[5], v[0], v[1], v[2]); + break; + } + case 12: { + READ_UINT_VALUES(8) + if ((v[1] + v[3] + v[5]) >= (v[0] + v[2] + v[4])) { + ep1 = uvec4(v[6], v[0], v[2], v[4]); + ep2 = uvec4(v[7], v[1], v[3], v[5]); + } else { + ep1 = uvec4(BlueContract(int(v[7]), int(v[1]), int(v[3]), int(v[5]))); + ep2 = uvec4(BlueContract(int(v[6]), int(v[0]), int(v[2]), int(v[4]))); + } + break; + } + case 13: { + READ_INT_VALUES(8) + ivec2 transferred = BitTransferSigned(v[1], v[0]); + v[1] = transferred.x; + v[0] = transferred.y; + transferred = BitTransferSigned(v[3], v[2]); + v[3] = transferred.x; + v[2] = transferred.y; + + transferred = BitTransferSigned(v[5], v[4]); + v[5] = transferred.x; + v[4] = transferred.y; + + transferred = BitTransferSigned(v[7], v[6]); + v[7] = transferred.x; + v[6] = transferred.y; + + if ((v[1] + v[3] + v[5]) >= 0) { + ep1 = ClampByte(ivec4(v[6], v[0], v[2], v[4])); + ep2 = ClampByte(ivec4(v[7] + v[6], v[0] + v[1], v[2] + v[3], v[4] + v[5])); + } else { + ep1 = ClampByte(BlueContract(v[6] + v[7], v[0] + v[1], v[2] + v[3], v[4] + v[5])); + ep2 = ClampByte(BlueContract(v[6], v[0], v[2], v[4])); + } + break; + } + default: { + // HDR mode, or more likely a bug computing the color_endpoint_mode + ep1 = uvec4(0xFF, 0xFF, 0, 0); + ep2 = uvec4(0xFF, 0xFF, 0, 0); + break; + } + } +#undef READ_UINT_VALUES +#undef READ_INT_VALUES +} + +uint UnquantizeTexelWeight(EncodingData val) { + uint bitval = val.bit_value; + uint bitlen = val.num_bits; + uint A = ReplicateBitTo7((bitval & 1)); + uint B = 0, C = 0, D = 0; + uint result = 0; + switch (val.encoding) { + case JUST_BITS: + result = FastReplicateTo6(bitval, bitlen); + break; + case TRIT: { + D = val.quint_trit_value; + switch (bitlen) { + case 0: { + uint results[3] = {0, 32, 63}; + result = results[D]; + break; + } + case 1: { + C = 50; + break; + } + case 2: { + C = 23; + uint b = (bitval >> 1) & 1; + B = (b << 6) | (b << 2) | b; + break; + } + case 3: { + C = 11; + uint cb = (bitval >> 1) & 3; + B = (cb << 5) | cb; + break; + } + default: + break; + } + break; + } + case QUINT: { + D = val.quint_trit_value; + switch (bitlen) { + case 0: { + uint results[5] = {0, 16, 32, 47, 63}; + result = results[D]; + break; + } + case 1: { + C = 28; + break; + } + case 2: { + C = 13; + uint b = (bitval >> 1) & 1; + B = (b << 6) | (b << 1); + break; + } + } + break; + } + } + if (val.encoding != JUST_BITS && bitlen > 0) { + result = D * C + B; + result ^= A; + result = (A & 0x20) | (result >> 2); + } + if (result > 32) { + result += 1; + } + return result; +} + +void UnquantizeTexelWeights(bool dual_plane, uvec2 size) { + uint weight_idx = 0; + uint unquantized[2][144]; + uint area = size.x * size.y; + for (uint itr = 0; itr < texel_vector_index; itr++) { + unquantized[0][weight_idx] = UnquantizeTexelWeight(texel_vector[itr]); + if (dual_plane) { + ++itr; + unquantized[1][weight_idx] = UnquantizeTexelWeight(texel_vector[itr]); + if (itr == texel_vector_index) { + break; + } + } + if (++weight_idx >= (area)) + break; + } + + const uint Ds = uint((block_dims.x * 0.5f + 1024) / (block_dims.x - 1)); + const uint Dt = uint((block_dims.y * 0.5f + 1024) / (block_dims.y - 1)); + const uint k_plane_scale = dual_plane ? 2 : 1; + for (uint plane = 0; plane < k_plane_scale; plane++) { + for (uint t = 0; t < block_dims.y; t++) { + for (uint s = 0; s < block_dims.x; s++) { + uint cs = Ds * s; + uint ct = Dt * t; + uint gs = (cs * (size.x - 1) + 32) >> 6; + uint gt = (ct * (size.y - 1) + 32) >> 6; + uint js = gs >> 4; + uint fs = gs & 0xF; + uint jt = gt >> 4; + uint ft = gt & 0x0F; + uint w11 = (fs * ft + 8) >> 4; + uint w10 = ft - w11; + uint w01 = fs - w11; + uint w00 = 16 - fs - ft + w11; + uvec4 w = uvec4(w00, w01, w10, w11); + uint v0 = jt * size.x + js; + + uvec4 p = uvec4(0); + if (v0 < area) { + p.x = unquantized[plane][v0]; + } + if ((v0 + 1) < (area)) { + p.y = unquantized[plane][v0 + 1]; + } + if ((v0 + size.x) < (area)) { + p.z = unquantized[plane][(v0 + size.x)]; + } + if ((v0 + size.x + 1) < (area)) { + p.w = unquantized[plane][(v0 + size.x + 1)]; + } + unquantized_texel_weights[plane][t * block_dims.x + s] = (uint(dot(p, w)) + 8) >> 4; + } + } + } +} + +int FindLayout(uint mode) { + if ((mode & 3) != 0) { + if ((mode & 8) != 0) { + if ((mode & 4) != 0) { + if ((mode & 0x100) != 0) { + return 4; + } + return 3; + } + return 2; + } + if ((mode & 4) != 0) { + return 1; + } + return 0; + } + if ((mode & 0x100) != 0) { + if ((mode & 0x80) != 0) { + if ((mode & 0x20) != 0) { + return 8; + } + return 7; + } + return 9; + } + if ((mode & 0x80) != 0) { + return 6; + } + return 5; +} + +TexelWeightParams DecodeBlockInfo(uint block_index) { + TexelWeightParams params = TexelWeightParams(uvec2(0), 0, false, false, false, false); + uint mode = StreamBits(11); + if ((mode & 0x1ff) == 0x1fc) { + if ((mode & 0x200) != 0) { + params.void_extent_hdr = true; + } else { + params.void_extent_ldr = true; + } + if ((mode & 0x400) == 0 || StreamBits(1) == 0) { + params.error_state = true; + } + return params; + } + if ((mode & 0xf) == 0) { + params.error_state = true; + return params; + } + if ((mode & 3) == 0 && (mode & 0x1c0) == 0x1c0) { + params.error_state = true; + return params; + } + uint A, B; + uint mode_layout = FindLayout(mode); + switch (mode_layout) { + case 0: + A = (mode >> 5) & 0x3; + B = (mode >> 7) & 0x3; + params.size = uvec2(B + 4, A + 2); + break; + case 1: + A = (mode >> 5) & 0x3; + B = (mode >> 7) & 0x3; + params.size = uvec2(B + 8, A + 2); + break; + case 2: + A = (mode >> 5) & 0x3; + B = (mode >> 7) & 0x3; + params.size = uvec2(A + 2, B + 8); + break; + case 3: + A = (mode >> 5) & 0x3; + B = (mode >> 7) & 0x1; + params.size = uvec2(A + 2, B + 6); + break; + case 4: + A = (mode >> 5) & 0x3; + B = (mode >> 7) & 0x1; + params.size = uvec2(B + 2, A + 2); + break; + case 5: + A = (mode >> 5) & 0x3; + params.size = uvec2(12, A + 2); + break; + case 6: + A = (mode >> 5) & 0x3; + params.size = uvec2(A + 2, 12); + break; + case 7: + params.size = uvec2(6, 10); + break; + case 8: + params.size = uvec2(10, 6); + break; + case 9: + A = (mode >> 5) & 0x3; + B = (mode >> 9) & 0x3; + params.size = uvec2(A + 6, B + 6); + break; + default: + params.error_state = true; + break; + } + params.dual_plane = (mode_layout != 9) && ((mode & 0x400) != 0); + uint weight_index = (mode & 0x10) != 0 ? 1 : 0; + if (mode_layout < 5) { + weight_index |= (mode & 0x3) << 1; + } else { + weight_index |= (mode & 0xc) >> 1; + } + weight_index -= 2; + if ((mode_layout != 9) && ((mode & 0x200) != 0)) { + const int max_weights[6] = int[6](9, 11, 15, 19, 23, 31); + params.max_weight = max_weights[weight_index]; + } else { + const int max_weights[6] = int[6](1, 2, 3, 4, 5, 7); + params.max_weight = max_weights[weight_index]; + } + return params; +} + +void FillError(ivec3 coord) { + for (uint j = 0; j < block_dims.y; j++) { + for (uint i = 0; i < block_dims.x; i++) { + imageStore(dest_image, coord + ivec3(i, j, 0), vec4(1.0, 1.0, 0.0, 1.0)); + } + } +} + +void FillVoidExtentLDR(ivec3 coord) { + StreamBits(52); + uint r_u = StreamBits(16); + uint g_u = StreamBits(16); + uint b_u = StreamBits(16); + uint a_u = StreamBits(16); + float a = float(a_u) / 65535.0f; + float r = float(r_u) / 65535.0f; + float g = float(g_u) / 65535.0f; + float b = float(b_u) / 65535.0f; + for (uint j = 0; j < block_dims.y; j++) { + for (uint i = 0; i < block_dims.x; i++) { + imageStore(dest_image, coord + ivec3(i, j, 0), vec4(r, g, b, a)); + } + } +} + +void DecompressBlock(ivec3 coord, uint block_index) { + TexelWeightParams params = DecodeBlockInfo(block_index); + if (params.error_state) { + FillError(coord); + return; + } + if (params.void_extent_hdr) { + FillError(coord); + return; + } + if (params.void_extent_ldr) { + FillVoidExtentLDR(coord); + return; + } + if ((params.size.x > block_dims.x) || (params.size.y > block_dims.y)) { + FillError(coord); + return; + } + uint num_partitions = StreamBits(2) + 1; + if (num_partitions > 4 || (num_partitions == 4 && params.dual_plane)) { + FillError(coord); + return; + } + int plane_index = -1; + uint partition_index = 1; + uvec4 color_endpoint_mode = uvec4(0); + uint ced_pointer = 0; + uint base_cem = 0; + if (num_partitions == 1) { + color_endpoint_mode.x = StreamBits(4); + partition_index = 0; + } else { + partition_index = StreamBits(10); + base_cem = StreamBits(6); + } + uint base_mode = base_cem & 3; + uint weight_bits = GetPackedBitSize(params.size, params.dual_plane, params.max_weight); + uint remaining_bits = 128 - weight_bits - total_bitsread; + uint extra_cem_bits = 0; + if (base_mode > 0) { + switch (num_partitions) { + case 2: + extra_cem_bits += 2; + break; + case 3: + extra_cem_bits += 5; + break; + case 4: + extra_cem_bits += 8; + break; + default: + return; + } + } + remaining_bits -= extra_cem_bits; + uint plane_selector_bits = 0; + if (params.dual_plane) { + plane_selector_bits = 2; + } + remaining_bits -= plane_selector_bits; + if (remaining_bits > 128) { + // Bad data, more remaining bits than 4 bytes + // return early + return; + } + // Read color data... + uint color_data_bits = remaining_bits; + while (remaining_bits > 0) { + int nb = int(min(remaining_bits, 8U)); + uint b = StreamBits(nb); + color_endpoint_data[ced_pointer] = uint(bitfieldExtract(b, 0, nb)); + ++ced_pointer; + remaining_bits -= nb; + } + plane_index = int(StreamBits(plane_selector_bits)); + if (base_mode > 0) { + uint extra_cem = StreamBits(extra_cem_bits); + uint cem = (extra_cem << 6) | base_cem; + cem >>= 2; + uvec4 C = uvec4(0); + for (uint i = 0; i < num_partitions; i++) { + C[i] = (cem & 1); + cem >>= 1; + } + uvec4 M = uvec4(0); + for (uint i = 0; i < num_partitions; i++) { + M[i] = cem & 3; + cem >>= 2; + } + for (uint i = 0; i < num_partitions; i++) { + color_endpoint_mode[i] = base_mode; + if (C[i] == 0) { + --color_endpoint_mode[i]; + } + color_endpoint_mode[i] <<= 2; + color_endpoint_mode[i] |= M[i]; + } + } else if (num_partitions > 1) { + uint cem = base_cem >> 2; + for (uint i = 0; i < num_partitions; i++) { + color_endpoint_mode[i] = cem; + } + } + DecodeColorValues(color_endpoint_mode, num_partitions, color_data_bits); + + uvec4 endpoints[4][2]; + for (uint i = 0; i < num_partitions; i++) { + ComputeEndpoints(endpoints[i][0], endpoints[i][1], color_endpoint_mode[i]); + } + + for (uint i = 0; i < 16; i++) { + texel_weight_data[i] = local_buff[i]; + } + for (uint i = 0; i < 8; i++) { +#define REVERSE_BYTE(b) ((b * 0x0802U & 0x22110U) | (b * 0x8020U & 0x88440U)) * 0x10101U >> 16 + uint a = REVERSE_BYTE(texel_weight_data[i]); + uint b = REVERSE_BYTE(texel_weight_data[15 - i]); +#undef REVERSE_BYTE + texel_weight_data[i] = uint(bitfieldExtract(b, 0, 8)); + texel_weight_data[15 - i] = uint(bitfieldExtract(a, 0, 8)); + } + uint clear_byte_start = + (GetPackedBitSize(params.size, params.dual_plane, params.max_weight) >> 3) + 1; + texel_weight_data[clear_byte_start - 1] = + texel_weight_data[clear_byte_start - 1] & + uint( + ((1 << (GetPackedBitSize(params.size, params.dual_plane, params.max_weight) % 8)) - 1)); + for (uint i = 0; i < 16 - clear_byte_start; i++) { + texel_weight_data[clear_byte_start + i] = 0U; + } + texel_flag = true; // use texel "vector" and bit stream in integer decoding + DecodeIntegerSequence(params.max_weight, GetNumWeightValues(params.size, params.dual_plane)); + + UnquantizeTexelWeights(params.dual_plane, params.size); + + for (uint j = 0; j < block_dims.y; j++) { + for (uint i = 0; i < block_dims.x; i++) { + uint local_partition = Select2DPartition(partition_index, i, j, num_partitions, + (block_dims.y * block_dims.x) < 32); + vec4 p; + uvec4 C0 = ReplicateByteTo16(endpoints[local_partition][0]); + uvec4 C1 = ReplicateByteTo16(endpoints[local_partition][1]); + uvec4 plane_vec = uvec4(0); + uvec4 weight_vec = uvec4(0); + for (uint c = 0; c < 4; c++) { + if (params.dual_plane && (((plane_index + 1) & 3) == c)) { + plane_vec[c] = 1; + } + weight_vec[c] = unquantized_texel_weights[plane_vec[c]][j * block_dims.x + i]; + } + vec4 Cf = vec4((C0 * (uvec4(64) - weight_vec) + C1 * weight_vec + uvec4(32)) / 64); + p = (Cf / 65535.0); + imageStore(dest_image, coord + ivec3(i, j, 0), p.gbar); + } + } +} + +void main() { + uvec3 pos = gl_GlobalInvocationID; + pos.x <<= bytes_per_block_log2; + + // Read as soon as possible due to its latency + const uint swizzle = SwizzleOffset(pos.xy); + + const uint block_y = pos.y >> GOB_SIZE_Y_SHIFT; + + uint offset = 0; + offset += pos.z * layer_stride; + offset += (block_y >> block_height) * block_size; + offset += (block_y & block_height_mask) << GOB_SIZE_SHIFT; + offset += (pos.x >> GOB_SIZE_X_SHIFT) << x_shift; + offset += swizzle; + + const ivec3 coord = ivec3(gl_GlobalInvocationID * uvec3(block_dims, 1)); + uint block_index = + pos.z * gl_WorkGroupSize.x * gl_WorkGroupSize.y + pos.y * gl_WorkGroupSize.x + pos.x; + + current_index = 0; + bitsread = 0; + for (int i = 0; i < 16; i++) { + local_buff[i] = ReadTexel(offset + i); + } + DecompressBlock(coord, block_index); +} diff --git a/src/video_core/host_shaders/source_shader.h.in b/src/video_core/host_shaders/source_shader.h.in index ccdb0d2a9..929dec39b 100644 --- a/src/video_core/host_shaders/source_shader.h.in +++ b/src/video_core/host_shaders/source_shader.h.in @@ -4,6 +4,8 @@ namespace HostShaders { -constexpr std::string_view @CONTENTS_NAME@ = R"(@CONTENTS@)"; +constexpr std::string_view @CONTENTS_NAME@ = { +@CONTENTS@ +}; } // namespace HostShaders diff --git a/src/video_core/renderer_opengl/gl_texture_cache.cpp b/src/video_core/renderer_opengl/gl_texture_cache.cpp index e028677e9..623b43d8a 100644 --- a/src/video_core/renderer_opengl/gl_texture_cache.cpp +++ b/src/video_core/renderer_opengl/gl_texture_cache.cpp @@ -307,7 +307,8 @@ void ApplySwizzle(GLuint handle, PixelFormat format, std::array<SwizzleSource, 4 [[nodiscard]] bool CanBeAccelerated(const TextureCacheRuntime& runtime, const VideoCommon::ImageInfo& info) { - // Disable accelerated uploads for now as they don't implement swizzled uploads + return !runtime.HasNativeASTC() && IsPixelFormatASTC(info.format); + // Disable other accelerated uploads for now as they don't implement swizzled uploads return false; switch (info.type) { case ImageType::e2D: @@ -569,7 +570,11 @@ void TextureCacheRuntime::AccelerateImageUpload(Image& image, const ImageBufferM std::span<const SwizzleParameters> swizzles) { switch (image.info.type) { case ImageType::e2D: - return util_shaders.BlockLinearUpload2D(image, map, swizzles); + if (IsPixelFormatASTC(image.info.format)) { + return util_shaders.ASTCDecode(image, map, swizzles); + } else { + return util_shaders.BlockLinearUpload2D(image, map, swizzles); + } case ImageType::e3D: return util_shaders.BlockLinearUpload3D(image, map, swizzles); case ImageType::Linear: @@ -599,6 +604,10 @@ FormatProperties TextureCacheRuntime::FormatInfo(ImageType type, GLenum internal } } +bool TextureCacheRuntime::HasNativeASTC() const noexcept { + return device.HasASTC(); +} + TextureCacheRuntime::StagingBuffers::StagingBuffers(GLenum storage_flags_, GLenum map_flags_) : storage_flags{storage_flags_}, map_flags{map_flags_} {} diff --git a/src/video_core/renderer_opengl/gl_texture_cache.h b/src/video_core/renderer_opengl/gl_texture_cache.h index 3fbaa102f..3c871541b 100644 --- a/src/video_core/renderer_opengl/gl_texture_cache.h +++ b/src/video_core/renderer_opengl/gl_texture_cache.h @@ -95,6 +95,8 @@ public: return has_broken_texture_view_formats; } + bool HasNativeASTC() const noexcept; + private: struct StagingBuffers { explicit StagingBuffers(GLenum storage_flags_, GLenum map_flags_); diff --git a/src/video_core/renderer_opengl/util_shaders.cpp b/src/video_core/renderer_opengl/util_shaders.cpp index 2fe4799bc..47fddcb6e 100644 --- a/src/video_core/renderer_opengl/util_shaders.cpp +++ b/src/video_core/renderer_opengl/util_shaders.cpp @@ -2,7 +2,6 @@ // Licensed under GPLv2 or any later version // Refer to the license.txt file included. -#include <bit> #include <span> #include <string_view> @@ -11,6 +10,7 @@ #include "common/assert.h" #include "common/common_types.h" #include "common/div_ceil.h" +#include "video_core/host_shaders/astc_decoder_comp.h" #include "video_core/host_shaders/block_linear_unswizzle_2d_comp.h" #include "video_core/host_shaders/block_linear_unswizzle_3d_comp.h" #include "video_core/host_shaders/opengl_copy_bc4_comp.h" @@ -20,16 +20,18 @@ #include "video_core/renderer_opengl/gl_shader_manager.h" #include "video_core/renderer_opengl/gl_texture_cache.h" #include "video_core/renderer_opengl/util_shaders.h" -#include "video_core/surface.h" #include "video_core/texture_cache/accelerated_swizzle.h" #include "video_core/texture_cache/types.h" #include "video_core/texture_cache/util.h" +#include "video_core/textures/astc.h" #include "video_core/textures/decoders.h" namespace OpenGL { using namespace HostShaders; +using namespace Tegra::Texture::ASTC; +using VideoCommon::Extent2D; using VideoCommon::Extent3D; using VideoCommon::ImageCopy; using VideoCommon::ImageType; @@ -57,7 +59,7 @@ size_t NumPixelsInCopy(const VideoCommon::ImageCopy& copy) { } // Anonymous namespace UtilShaders::UtilShaders(ProgramManager& program_manager_) - : program_manager{program_manager_}, + : program_manager{program_manager_}, astc_decoder_program(MakeProgram(ASTC_DECODER_COMP)), block_linear_unswizzle_2d_program(MakeProgram(BLOCK_LINEAR_UNSWIZZLE_2D_COMP)), block_linear_unswizzle_3d_program(MakeProgram(BLOCK_LINEAR_UNSWIZZLE_3D_COMP)), pitch_unswizzle_program(MakeProgram(PITCH_UNSWIZZLE_COMP)), @@ -65,11 +67,79 @@ UtilShaders::UtilShaders(ProgramManager& program_manager_) copy_bc4_program(MakeProgram(OPENGL_COPY_BC4_COMP)) { const auto swizzle_table = Tegra::Texture::MakeSwizzleTable(); swizzle_table_buffer.Create(); + astc_buffer.Create(); glNamedBufferStorage(swizzle_table_buffer.handle, sizeof(swizzle_table), &swizzle_table, 0); + glNamedBufferStorage(astc_buffer.handle, sizeof(ASTC_BUFFER_DATA), &ASTC_BUFFER_DATA, 0); } UtilShaders::~UtilShaders() = default; +void UtilShaders::ASTCDecode(Image& image, const ImageBufferMap& map, + std::span<const VideoCommon::SwizzleParameters> swizzles) { + static constexpr GLuint BINDING_SWIZZLE_BUFFER = 0; + static constexpr GLuint BINDING_INPUT_BUFFER = 1; + static constexpr GLuint BINDING_ENC_BUFFER = 2; + + static constexpr GLuint BINDING_6_TO_8_BUFFER = 3; + static constexpr GLuint BINDING_7_TO_8_BUFFER = 4; + static constexpr GLuint BINDING_8_TO_8_BUFFER = 5; + static constexpr GLuint BINDING_BYTE_TO_16_BUFFER = 6; + + static constexpr GLuint BINDING_OUTPUT_IMAGE = 0; + + const Extent2D tile_size{ + .width = VideoCore::Surface::DefaultBlockWidth(image.info.format), + .height = VideoCore::Surface::DefaultBlockHeight(image.info.format), + }; + program_manager.BindHostCompute(astc_decoder_program.handle); + glBindBufferBase(GL_SHADER_STORAGE_BUFFER, BINDING_SWIZZLE_BUFFER, swizzle_table_buffer.handle); + glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_ENC_BUFFER, astc_buffer.handle, + offsetof(AstcBufferData, encoding_values), + sizeof(AstcBufferData::encoding_values)); + glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_6_TO_8_BUFFER, astc_buffer.handle, + offsetof(AstcBufferData, replicate_6_to_8), + sizeof(AstcBufferData::replicate_6_to_8)); + glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_7_TO_8_BUFFER, astc_buffer.handle, + offsetof(AstcBufferData, replicate_7_to_8), + sizeof(AstcBufferData::replicate_7_to_8)); + glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_8_TO_8_BUFFER, astc_buffer.handle, + offsetof(AstcBufferData, replicate_8_to_8), + sizeof(AstcBufferData::replicate_8_to_8)); + glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_BYTE_TO_16_BUFFER, astc_buffer.handle, + offsetof(AstcBufferData, replicate_byte_to_16), + sizeof(AstcBufferData::replicate_byte_to_16)); + + glFlushMappedNamedBufferRange(map.buffer, map.offset, image.guest_size_bytes); + glUniform2ui(1, tile_size.width, tile_size.height); + // Ensure buffer data is valid before dispatching + glFlush(); + for (const SwizzleParameters& swizzle : swizzles) { + const size_t input_offset = swizzle.buffer_offset + map.offset; + const u32 num_dispatches_x = Common::DivCeil(swizzle.num_tiles.width, 32U); + const u32 num_dispatches_y = Common::DivCeil(swizzle.num_tiles.height, 32U); + + const auto params = MakeBlockLinearSwizzle2DParams(swizzle, image.info); + ASSERT(params.origin == (std::array<u32, 3>{0, 0, 0})); + ASSERT(params.destination == (std::array<s32, 3>{0, 0, 0})); + + glUniform1ui(2, params.bytes_per_block_log2); + glUniform1ui(3, params.layer_stride); + glUniform1ui(4, params.block_size); + glUniform1ui(5, params.x_shift); + glUniform1ui(6, params.block_height); + glUniform1ui(7, params.block_height_mask); + + glBindImageTexture(BINDING_OUTPUT_IMAGE, image.StorageHandle(), swizzle.level, GL_TRUE, 0, + GL_WRITE_ONLY, GL_RGBA8); + // ASTC texture data + glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_INPUT_BUFFER, map.buffer, input_offset, + image.guest_size_bytes - swizzle.buffer_offset); + + glDispatchCompute(num_dispatches_x, num_dispatches_y, image.info.resources.layers); + } + program_manager.RestoreGuestCompute(); +} + void UtilShaders::BlockLinearUpload2D(Image& image, const ImageBufferMap& map, std::span<const SwizzleParameters> swizzles) { static constexpr Extent3D WORKGROUP_SIZE{32, 32, 1}; diff --git a/src/video_core/renderer_opengl/util_shaders.h b/src/video_core/renderer_opengl/util_shaders.h index 93b009743..53d65f368 100644 --- a/src/video_core/renderer_opengl/util_shaders.h +++ b/src/video_core/renderer_opengl/util_shaders.h @@ -40,6 +40,9 @@ public: explicit UtilShaders(ProgramManager& program_manager); ~UtilShaders(); + void ASTCDecode(Image& image, const ImageBufferMap& map, + std::span<const VideoCommon::SwizzleParameters> swizzles); + void BlockLinearUpload2D(Image& image, const ImageBufferMap& map, std::span<const VideoCommon::SwizzleParameters> swizzles); @@ -59,7 +62,9 @@ private: ProgramManager& program_manager; OGLBuffer swizzle_table_buffer; + OGLBuffer astc_buffer; + OGLProgram astc_decoder_program; OGLProgram block_linear_unswizzle_2d_program; OGLProgram block_linear_unswizzle_3d_program; OGLProgram pitch_unswizzle_program; diff --git a/src/video_core/renderer_vulkan/maxwell_to_vk.cpp b/src/video_core/renderer_vulkan/maxwell_to_vk.cpp index 19aaf034f..f088447e9 100644 --- a/src/video_core/renderer_vulkan/maxwell_to_vk.cpp +++ b/src/video_core/renderer_vulkan/maxwell_to_vk.cpp @@ -166,7 +166,7 @@ struct FormatTuple { {VK_FORMAT_R16G16_SINT, Attachable | Storage}, // R16G16_SINT {VK_FORMAT_R16G16_SNORM, Attachable | Storage}, // R16G16_SNORM {VK_FORMAT_UNDEFINED}, // R32G32B32_FLOAT - {VK_FORMAT_R8G8B8A8_SRGB, Attachable}, // A8B8G8R8_SRGB + {VK_FORMAT_A8B8G8R8_SRGB_PACK32, Attachable}, // A8B8G8R8_SRGB {VK_FORMAT_R8G8_UNORM, Attachable | Storage}, // R8G8_UNORM {VK_FORMAT_R8G8_SNORM, Attachable | Storage}, // R8G8_SNORM {VK_FORMAT_R8G8_SINT, Attachable | Storage}, // R8G8_SINT diff --git a/src/video_core/renderer_vulkan/vk_compute_pass.cpp b/src/video_core/renderer_vulkan/vk_compute_pass.cpp index 2f9a7b028..e11406e58 100644 --- a/src/video_core/renderer_vulkan/vk_compute_pass.cpp +++ b/src/video_core/renderer_vulkan/vk_compute_pass.cpp @@ -11,18 +11,39 @@ #include "common/assert.h" #include "common/common_types.h" #include "common/div_ceil.h" +#include "video_core/host_shaders/astc_decoder_comp_spv.h" #include "video_core/host_shaders/vulkan_quad_indexed_comp_spv.h" #include "video_core/host_shaders/vulkan_uint8_comp_spv.h" #include "video_core/renderer_vulkan/vk_compute_pass.h" #include "video_core/renderer_vulkan/vk_descriptor_pool.h" #include "video_core/renderer_vulkan/vk_scheduler.h" #include "video_core/renderer_vulkan/vk_staging_buffer_pool.h" +#include "video_core/renderer_vulkan/vk_texture_cache.h" #include "video_core/renderer_vulkan/vk_update_descriptor.h" +#include "video_core/texture_cache/accelerated_swizzle.h" +#include "video_core/texture_cache/types.h" +#include "video_core/textures/astc.h" +#include "video_core/textures/decoders.h" #include "video_core/vulkan_common/vulkan_device.h" #include "video_core/vulkan_common/vulkan_wrapper.h" namespace Vulkan { + +using Tegra::Texture::SWIZZLE_TABLE; +using Tegra::Texture::ASTC::EncodingsValues; +using namespace Tegra::Texture::ASTC; + namespace { + +constexpr u32 ASTC_BINDING_INPUT_BUFFER = 0; +constexpr u32 ASTC_BINDING_ENC_BUFFER = 1; +constexpr u32 ASTC_BINDING_6_TO_8_BUFFER = 2; +constexpr u32 ASTC_BINDING_7_TO_8_BUFFER = 3; +constexpr u32 ASTC_BINDING_8_TO_8_BUFFER = 4; +constexpr u32 ASTC_BINDING_BYTE_TO_16_BUFFER = 5; +constexpr u32 ASTC_BINDING_SWIZZLE_BUFFER = 6; +constexpr u32 ASTC_BINDING_OUTPUT_IMAGE = 7; + VkPushConstantRange BuildComputePushConstantRange(std::size_t size) { return { .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, @@ -50,6 +71,67 @@ std::array<VkDescriptorSetLayoutBinding, 2> BuildInputOutputDescriptorSetBinding }}; } +std::array<VkDescriptorSetLayoutBinding, 8> BuildASTCDescriptorSetBindings() { + return {{ + { + .binding = ASTC_BINDING_INPUT_BUFFER, + .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, + .descriptorCount = 1, + .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, + .pImmutableSamplers = nullptr, + }, + { + .binding = ASTC_BINDING_ENC_BUFFER, + .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, + .descriptorCount = 1, + .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, + .pImmutableSamplers = nullptr, + }, + { + .binding = ASTC_BINDING_6_TO_8_BUFFER, + .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, + .descriptorCount = 1, + .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, + .pImmutableSamplers = nullptr, + }, + { + .binding = ASTC_BINDING_7_TO_8_BUFFER, + .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, + .descriptorCount = 1, + .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, + .pImmutableSamplers = nullptr, + }, + { + .binding = ASTC_BINDING_8_TO_8_BUFFER, + .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, + .descriptorCount = 1, + .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, + .pImmutableSamplers = nullptr, + }, + { + .binding = ASTC_BINDING_BYTE_TO_16_BUFFER, + .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, + .descriptorCount = 1, + .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, + .pImmutableSamplers = nullptr, + }, + { + .binding = ASTC_BINDING_SWIZZLE_BUFFER, + .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, + .descriptorCount = 1, + .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, + .pImmutableSamplers = nullptr, + }, + { + .binding = ASTC_BINDING_OUTPUT_IMAGE, + .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, + .descriptorCount = 1, + .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, + .pImmutableSamplers = nullptr, + }, + }}; +} + VkDescriptorUpdateTemplateEntryKHR BuildInputOutputDescriptorUpdateTemplate() { return { .dstBinding = 0, @@ -61,6 +143,94 @@ VkDescriptorUpdateTemplateEntryKHR BuildInputOutputDescriptorUpdateTemplate() { }; } +std::array<VkDescriptorUpdateTemplateEntryKHR, 8> BuildASTCPassDescriptorUpdateTemplateEntry() { + return {{ + { + .dstBinding = ASTC_BINDING_INPUT_BUFFER, + .dstArrayElement = 0, + .descriptorCount = 1, + .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, + .offset = ASTC_BINDING_INPUT_BUFFER * sizeof(DescriptorUpdateEntry), + .stride = sizeof(DescriptorUpdateEntry), + }, + { + .dstBinding = ASTC_BINDING_ENC_BUFFER, + .dstArrayElement = 0, + .descriptorCount = 1, + .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, + .offset = ASTC_BINDING_ENC_BUFFER * sizeof(DescriptorUpdateEntry), + .stride = sizeof(DescriptorUpdateEntry), + }, + { + .dstBinding = ASTC_BINDING_6_TO_8_BUFFER, + .dstArrayElement = 0, + .descriptorCount = 1, + .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, + .offset = ASTC_BINDING_6_TO_8_BUFFER * sizeof(DescriptorUpdateEntry), + .stride = sizeof(DescriptorUpdateEntry), + }, + { + .dstBinding = ASTC_BINDING_7_TO_8_BUFFER, + .dstArrayElement = 0, + .descriptorCount = 1, + .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, + .offset = ASTC_BINDING_7_TO_8_BUFFER * sizeof(DescriptorUpdateEntry), + .stride = sizeof(DescriptorUpdateEntry), + }, + { + .dstBinding = ASTC_BINDING_8_TO_8_BUFFER, + .dstArrayElement = 0, + .descriptorCount = 1, + .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, + .offset = ASTC_BINDING_8_TO_8_BUFFER * sizeof(DescriptorUpdateEntry), + .stride = sizeof(DescriptorUpdateEntry), + }, + { + .dstBinding = ASTC_BINDING_BYTE_TO_16_BUFFER, + .dstArrayElement = 0, + .descriptorCount = 1, + .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, + .offset = ASTC_BINDING_BYTE_TO_16_BUFFER * sizeof(DescriptorUpdateEntry), + .stride = sizeof(DescriptorUpdateEntry), + }, + { + .dstBinding = ASTC_BINDING_SWIZZLE_BUFFER, + .dstArrayElement = 0, + .descriptorCount = 1, + .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, + .offset = ASTC_BINDING_SWIZZLE_BUFFER * sizeof(DescriptorUpdateEntry), + .stride = sizeof(DescriptorUpdateEntry), + }, + { + .dstBinding = ASTC_BINDING_OUTPUT_IMAGE, + .dstArrayElement = 0, + .descriptorCount = 1, + .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, + .offset = ASTC_BINDING_OUTPUT_IMAGE * sizeof(DescriptorUpdateEntry), + .stride = sizeof(DescriptorUpdateEntry), + }, + }}; +} + +struct AstcPushConstants { + std::array<u32, 2> blocks_dims; + u32 bytes_per_block_log2; + u32 layer_stride; + u32 block_size; + u32 x_shift; + u32 block_height; + u32 block_height_mask; +}; + +struct AstcBufferData { + decltype(SWIZZLE_TABLE) swizzle_table_buffer = SWIZZLE_TABLE; + decltype(EncodingsValues) encoding_values = EncodingsValues; + decltype(REPLICATE_6_BIT_TO_8_TABLE) replicate_6_to_8 = REPLICATE_6_BIT_TO_8_TABLE; + decltype(REPLICATE_7_BIT_TO_8_TABLE) replicate_7_to_8 = REPLICATE_7_BIT_TO_8_TABLE; + decltype(REPLICATE_8_BIT_TO_8_TABLE) replicate_8_to_8 = REPLICATE_8_BIT_TO_8_TABLE; + decltype(REPLICATE_BYTE_TO_16_TABLE) replicate_byte_to_16 = REPLICATE_BYTE_TO_16_TABLE; +} constexpr ASTC_BUFFER_DATA; + } // Anonymous namespace VKComputePass::VKComputePass(const Device& device, VKDescriptorPool& descriptor_pool, @@ -238,4 +408,167 @@ std::pair<VkBuffer, VkDeviceSize> QuadIndexedPass::Assemble( return {staging.buffer, staging.offset}; } +ASTCDecoderPass::ASTCDecoderPass(const Device& device_, VKScheduler& scheduler_, + VKDescriptorPool& descriptor_pool_, + StagingBufferPool& staging_buffer_pool_, + VKUpdateDescriptorQueue& update_descriptor_queue_, + MemoryAllocator& memory_allocator_) + : VKComputePass(device_, descriptor_pool_, BuildASTCDescriptorSetBindings(), + BuildASTCPassDescriptorUpdateTemplateEntry(), + BuildComputePushConstantRange(sizeof(AstcPushConstants)), + ASTC_DECODER_COMP_SPV), + device{device_}, scheduler{scheduler_}, staging_buffer_pool{staging_buffer_pool_}, + update_descriptor_queue{update_descriptor_queue_}, memory_allocator{memory_allocator_} {} + +ASTCDecoderPass::~ASTCDecoderPass() = default; + +void ASTCDecoderPass::MakeDataBuffer() { + constexpr size_t TOTAL_BUFFER_SIZE = sizeof(ASTC_BUFFER_DATA) + sizeof(SWIZZLE_TABLE); + data_buffer = device.GetLogical().CreateBuffer(VkBufferCreateInfo{ + .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, + .pNext = nullptr, + .flags = 0, + .size = TOTAL_BUFFER_SIZE, + .usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, + .sharingMode = VK_SHARING_MODE_EXCLUSIVE, + .queueFamilyIndexCount = 0, + .pQueueFamilyIndices = nullptr, + }); + data_buffer_commit = memory_allocator.Commit(data_buffer, MemoryUsage::Upload); + + const auto staging_ref = staging_buffer_pool.Request(TOTAL_BUFFER_SIZE, MemoryUsage::Upload); + std::memcpy(staging_ref.mapped_span.data(), &ASTC_BUFFER_DATA, sizeof(ASTC_BUFFER_DATA)); + // Tack on the swizzle table at the end of the buffer + std::memcpy(staging_ref.mapped_span.data() + sizeof(ASTC_BUFFER_DATA), &SWIZZLE_TABLE, + sizeof(SWIZZLE_TABLE)); + + scheduler.Record([src = staging_ref.buffer, offset = staging_ref.offset, dst = *data_buffer, + TOTAL_BUFFER_SIZE](vk::CommandBuffer cmdbuf) { + cmdbuf.CopyBuffer(src, dst, + VkBufferCopy{ + .srcOffset = offset, + .dstOffset = 0, + .size = TOTAL_BUFFER_SIZE, + }); + cmdbuf.PipelineBarrier( + VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, + VkMemoryBarrier{ + .sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER, + .pNext = nullptr, + .srcAccessMask = 0, + .dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_TRANSFER_WRITE_BIT, + }); + }); +} + +void ASTCDecoderPass::Assemble(Image& image, const StagingBufferRef& map, + std::span<const VideoCommon::SwizzleParameters> swizzles) { + using namespace VideoCommon::Accelerated; + const std::array<u32, 2> block_dims{ + VideoCore::Surface::DefaultBlockWidth(image.info.format), + VideoCore::Surface::DefaultBlockHeight(image.info.format), + }; + scheduler.RequestOutsideRenderPassOperationContext(); + if (!data_buffer) { + MakeDataBuffer(); + } + const VkPipeline vk_pipeline = *pipeline; + const VkImageAspectFlags aspect_mask = image.AspectMask(); + const VkImage vk_image = image.Handle(); + const bool is_initialized = image.ExchangeInitialization(); + scheduler.Record( + [vk_pipeline, vk_image, aspect_mask, is_initialized](vk::CommandBuffer cmdbuf) { + const VkImageMemoryBarrier image_barrier{ + .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, + .pNext = nullptr, + .srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT, + .dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, + .oldLayout = is_initialized ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_UNDEFINED, + .newLayout = VK_IMAGE_LAYOUT_GENERAL, + .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, + .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, + .image = vk_image, + .subresourceRange{ + .aspectMask = aspect_mask, + .baseMipLevel = 0, + .levelCount = VK_REMAINING_MIP_LEVELS, + .baseArrayLayer = 0, + .layerCount = VK_REMAINING_ARRAY_LAYERS, + }, + }; + cmdbuf.PipelineBarrier(is_initialized ? VK_PIPELINE_STAGE_ALL_COMMANDS_BIT : 0, + VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, image_barrier); + cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, vk_pipeline); + }); + for (const VideoCommon::SwizzleParameters& swizzle : swizzles) { + const size_t input_offset = swizzle.buffer_offset + map.offset; + const u32 num_dispatches_x = Common::DivCeil(swizzle.num_tiles.width, 32U); + const u32 num_dispatches_y = Common::DivCeil(swizzle.num_tiles.height, 32U); + const u32 num_dispatches_z = image.info.resources.layers; + + update_descriptor_queue.Acquire(); + update_descriptor_queue.AddBuffer(map.buffer, input_offset, + image.guest_size_bytes - swizzle.buffer_offset); + update_descriptor_queue.AddBuffer(*data_buffer, offsetof(AstcBufferData, encoding_values), + sizeof(AstcBufferData::encoding_values)); + update_descriptor_queue.AddBuffer(*data_buffer, offsetof(AstcBufferData, replicate_6_to_8), + sizeof(AstcBufferData::replicate_6_to_8)); + update_descriptor_queue.AddBuffer(*data_buffer, offsetof(AstcBufferData, replicate_7_to_8), + sizeof(AstcBufferData::replicate_7_to_8)); + update_descriptor_queue.AddBuffer(*data_buffer, offsetof(AstcBufferData, replicate_8_to_8), + sizeof(AstcBufferData::replicate_8_to_8)); + update_descriptor_queue.AddBuffer(*data_buffer, + offsetof(AstcBufferData, replicate_byte_to_16), + sizeof(AstcBufferData::replicate_byte_to_16)); + update_descriptor_queue.AddBuffer(*data_buffer, sizeof(AstcBufferData), + sizeof(SWIZZLE_TABLE)); + update_descriptor_queue.AddImage(image.StorageImageView(swizzle.level)); + + const VkDescriptorSet set = CommitDescriptorSet(update_descriptor_queue); + const VkPipelineLayout vk_layout = *layout; + + // To unswizzle the ASTC data + const auto params = MakeBlockLinearSwizzle2DParams(swizzle, image.info); + ASSERT(params.origin == (std::array<u32, 3>{0, 0, 0})); + ASSERT(params.destination == (std::array<s32, 3>{0, 0, 0})); + scheduler.Record([vk_layout, num_dispatches_x, num_dispatches_y, num_dispatches_z, + block_dims, params, set](vk::CommandBuffer cmdbuf) { + const AstcPushConstants uniforms{ + .blocks_dims = block_dims, + .bytes_per_block_log2 = params.bytes_per_block_log2, + .layer_stride = params.layer_stride, + .block_size = params.block_size, + .x_shift = params.x_shift, + .block_height = params.block_height, + .block_height_mask = params.block_height_mask, + }; + cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_COMPUTE, vk_layout, 0, set, {}); + cmdbuf.PushConstants(vk_layout, VK_SHADER_STAGE_COMPUTE_BIT, uniforms); + cmdbuf.Dispatch(num_dispatches_x, num_dispatches_y, num_dispatches_z); + }); + } + scheduler.Record([vk_image, aspect_mask](vk::CommandBuffer cmdbuf) { + const VkImageMemoryBarrier image_barrier{ + .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, + .pNext = nullptr, + .srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT, + .dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, + .oldLayout = VK_IMAGE_LAYOUT_GENERAL, + .newLayout = VK_IMAGE_LAYOUT_GENERAL, + .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, + .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, + .image = vk_image, + .subresourceRange{ + .aspectMask = aspect_mask, + .baseMipLevel = 0, + .levelCount = VK_REMAINING_MIP_LEVELS, + .baseArrayLayer = 0, + .layerCount = VK_REMAINING_ARRAY_LAYERS, + }, + }; + cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, + VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, image_barrier); + }); +} + } // namespace Vulkan diff --git a/src/video_core/renderer_vulkan/vk_compute_pass.h b/src/video_core/renderer_vulkan/vk_compute_pass.h index 17d781d99..5ea187c30 100644 --- a/src/video_core/renderer_vulkan/vk_compute_pass.h +++ b/src/video_core/renderer_vulkan/vk_compute_pass.h @@ -11,14 +11,21 @@ #include "common/common_types.h" #include "video_core/engines/maxwell_3d.h" #include "video_core/renderer_vulkan/vk_descriptor_pool.h" +#include "video_core/vulkan_common/vulkan_memory_allocator.h" #include "video_core/vulkan_common/vulkan_wrapper.h" +namespace VideoCommon { +struct SwizzleParameters; +} + namespace Vulkan { class Device; class StagingBufferPool; class VKScheduler; class VKUpdateDescriptorQueue; +class Image; +struct StagingBufferRef; class VKComputePass { public: @@ -77,4 +84,29 @@ private: VKUpdateDescriptorQueue& update_descriptor_queue; }; +class ASTCDecoderPass final : public VKComputePass { +public: + explicit ASTCDecoderPass(const Device& device_, VKScheduler& scheduler_, + VKDescriptorPool& descriptor_pool_, + StagingBufferPool& staging_buffer_pool_, + VKUpdateDescriptorQueue& update_descriptor_queue_, + MemoryAllocator& memory_allocator_); + ~ASTCDecoderPass(); + + void Assemble(Image& image, const StagingBufferRef& map, + std::span<const VideoCommon::SwizzleParameters> swizzles); + +private: + void MakeDataBuffer(); + + const Device& device; + VKScheduler& scheduler; + StagingBufferPool& staging_buffer_pool; + VKUpdateDescriptorQueue& update_descriptor_queue; + MemoryAllocator& memory_allocator; + + vk::Buffer data_buffer; + MemoryCommit data_buffer_commit; +}; + } // namespace Vulkan diff --git a/src/video_core/renderer_vulkan/vk_rasterizer.cpp b/src/video_core/renderer_vulkan/vk_rasterizer.cpp index dfd38f575..df5b7b172 100644 --- a/src/video_core/renderer_vulkan/vk_rasterizer.cpp +++ b/src/video_core/renderer_vulkan/vk_rasterizer.cpp @@ -241,7 +241,10 @@ RasterizerVulkan::RasterizerVulkan(Core::Frontend::EmuWindow& emu_window_, Tegra staging_pool(device, memory_allocator, scheduler), descriptor_pool(device, scheduler), update_descriptor_queue(device, scheduler), blit_image(device, scheduler, state_tracker, descriptor_pool), - texture_cache_runtime{device, scheduler, memory_allocator, staging_pool, blit_image}, + astc_decoder_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue, + memory_allocator), + texture_cache_runtime{device, scheduler, memory_allocator, + staging_pool, blit_image, astc_decoder_pass}, texture_cache(texture_cache_runtime, *this, maxwell3d, kepler_compute, gpu_memory), buffer_cache_runtime(device, memory_allocator, scheduler, staging_pool, update_descriptor_queue, descriptor_pool), diff --git a/src/video_core/renderer_vulkan/vk_rasterizer.h b/src/video_core/renderer_vulkan/vk_rasterizer.h index acea1ba2d..235afc6f3 100644 --- a/src/video_core/renderer_vulkan/vk_rasterizer.h +++ b/src/video_core/renderer_vulkan/vk_rasterizer.h @@ -173,6 +173,7 @@ private: VKDescriptorPool descriptor_pool; VKUpdateDescriptorQueue update_descriptor_queue; BlitImageHelper blit_image; + ASTCDecoderPass astc_decoder_pass; GraphicsPipelineCacheKey graphics_key; diff --git a/src/video_core/renderer_vulkan/vk_texture_cache.cpp b/src/video_core/renderer_vulkan/vk_texture_cache.cpp index 22a1014a9..18155e449 100644 --- a/src/video_core/renderer_vulkan/vk_texture_cache.cpp +++ b/src/video_core/renderer_vulkan/vk_texture_cache.cpp @@ -10,6 +10,7 @@ #include "video_core/engines/fermi_2d.h" #include "video_core/renderer_vulkan/blit_image.h" #include "video_core/renderer_vulkan/maxwell_to_vk.h" +#include "video_core/renderer_vulkan/vk_compute_pass.h" #include "video_core/renderer_vulkan/vk_rasterizer.h" #include "video_core/renderer_vulkan/vk_scheduler.h" #include "video_core/renderer_vulkan/vk_staging_buffer_pool.h" @@ -807,7 +808,7 @@ Image::Image(TextureCacheRuntime& runtime, const ImageInfo& info_, GPUVAddr gpu_ commit = runtime.memory_allocator.Commit(buffer, MemoryUsage::DeviceLocal); } if (IsPixelFormatASTC(info.format) && !runtime.device.IsOptimalAstcSupported()) { - flags |= VideoCommon::ImageFlagBits::Converted; + flags |= VideoCommon::ImageFlagBits::AcceleratedUpload; } if (runtime.device.HasDebuggingToolAttached()) { if (image) { @@ -816,6 +817,38 @@ Image::Image(TextureCacheRuntime& runtime, const ImageInfo& info_, GPUVAddr gpu_ buffer.SetObjectNameEXT(VideoCommon::Name(*this).c_str()); } } + static constexpr VkImageViewUsageCreateInfo storage_image_view_usage_create_info{ + .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO, + .pNext = nullptr, + .usage = VK_IMAGE_USAGE_STORAGE_BIT, + }; + if (IsPixelFormatASTC(info.format) && !runtime.device.IsOptimalAstcSupported()) { + const auto& device = runtime.device.GetLogical(); + storage_image_views.reserve(info.resources.levels); + for (s32 level = 0; level < info.resources.levels; ++level) { + storage_image_views.push_back(device.CreateImageView(VkImageViewCreateInfo{ + .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, + .pNext = &storage_image_view_usage_create_info, + .flags = 0, + .image = *image, + .viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY, + .format = VK_FORMAT_A8B8G8R8_UNORM_PACK32, + .components{ + .r = VK_COMPONENT_SWIZZLE_IDENTITY, + .g = VK_COMPONENT_SWIZZLE_IDENTITY, + .b = VK_COMPONENT_SWIZZLE_IDENTITY, + .a = VK_COMPONENT_SWIZZLE_IDENTITY, + }, + .subresourceRange{ + .aspectMask = aspect_mask, + .baseMipLevel = static_cast<u32>(level), + .levelCount = 1, + .baseArrayLayer = 0, + .layerCount = VK_REMAINING_ARRAY_LAYERS, + }, + })); + } + } } void Image::UploadMemory(const StagingBufferRef& map, std::span<const BufferImageCopy> copies) { @@ -918,7 +951,6 @@ ImageView::ImageView(TextureCacheRuntime& runtime, const VideoCommon::ImageViewI } } const auto format_info = MaxwellToVK::SurfaceFormat(*device, FormatType::Optimal, true, format); - const VkFormat vk_format = format_info.format; const VkImageViewUsageCreateInfo image_view_usage{ .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO, .pNext = nullptr, @@ -930,7 +962,7 @@ ImageView::ImageView(TextureCacheRuntime& runtime, const VideoCommon::ImageViewI .flags = 0, .image = image.Handle(), .viewType = VkImageViewType{}, - .format = vk_format, + .format = format_info.format, .components{ .r = ComponentSwizzle(swizzle[0]), .g = ComponentSwizzle(swizzle[1]), @@ -982,7 +1014,7 @@ ImageView::ImageView(TextureCacheRuntime& runtime, const VideoCommon::ImageViewI .pNext = nullptr, .flags = 0, .buffer = image.Buffer(), - .format = vk_format, + .format = format_info.format, .offset = 0, // TODO: Redesign buffer cache to support this .range = image.guest_size_bytes, }); @@ -1167,4 +1199,13 @@ Framebuffer::Framebuffer(TextureCacheRuntime& runtime, std::span<ImageView*, NUM } } +void TextureCacheRuntime::AccelerateImageUpload( + Image& image, const StagingBufferRef& map, + std::span<const VideoCommon::SwizzleParameters> swizzles) { + if (IsPixelFormatASTC(image.info.format)) { + return astc_decoder_pass.Assemble(image, map, swizzles); + } + UNREACHABLE(); +} + } // namespace Vulkan diff --git a/src/video_core/renderer_vulkan/vk_texture_cache.h b/src/video_core/renderer_vulkan/vk_texture_cache.h index 3aee27ce0..628785d5e 100644 --- a/src/video_core/renderer_vulkan/vk_texture_cache.h +++ b/src/video_core/renderer_vulkan/vk_texture_cache.h @@ -20,6 +20,7 @@ using VideoCommon::Offset2D; using VideoCommon::RenderTargets; using VideoCore::Surface::PixelFormat; +class ASTCDecoderPass; class BlitImageHelper; class Device; class Image; @@ -60,6 +61,7 @@ struct TextureCacheRuntime { MemoryAllocator& memory_allocator; StagingBufferPool& staging_buffer_pool; BlitImageHelper& blit_image_helper; + ASTCDecoderPass& astc_decoder_pass; std::unordered_map<RenderPassKey, vk::RenderPass> renderpass_cache{}; void Finish(); @@ -83,9 +85,7 @@ struct TextureCacheRuntime { } void AccelerateImageUpload(Image&, const StagingBufferRef&, - std::span<const VideoCommon::SwizzleParameters>) { - UNREACHABLE(); - } + std::span<const VideoCommon::SwizzleParameters>); void InsertUploadMemoryBarrier() {} @@ -121,15 +121,26 @@ public: return *buffer; } - [[nodiscard]] VkImageCreateFlags AspectMask() const noexcept { + [[nodiscard]] VkImageAspectFlags AspectMask() const noexcept { return aspect_mask; } + [[nodiscard]] VkImageView StorageImageView(s32 level) const noexcept { + return *storage_image_views[level]; + } + + /// Returns true when the image is already initialized and mark it as initialized + [[nodiscard]] bool ExchangeInitialization() noexcept { + return std::exchange(initialized, true); + } + private: VKScheduler* scheduler; vk::Image image; vk::Buffer buffer; MemoryCommit commit; + vk::ImageView image_view; + std::vector<vk::ImageView> storage_image_views; VkImageAspectFlags aspect_mask = 0; bool initialized = false; }; diff --git a/src/video_core/texture_cache/accelerated_swizzle.h b/src/video_core/texture_cache/accelerated_swizzle.h index 6ec5c78c4..a11c924e1 100644 --- a/src/video_core/texture_cache/accelerated_swizzle.h +++ b/src/video_core/texture_cache/accelerated_swizzle.h @@ -13,8 +13,8 @@ namespace VideoCommon::Accelerated { struct BlockLinearSwizzle2DParams { - std::array<u32, 3> origin; - std::array<s32, 3> destination; + alignas(16) std::array<u32, 3> origin; + alignas(16) std::array<s32, 3> destination; u32 bytes_per_block_log2; u32 layer_stride; u32 block_size; diff --git a/src/video_core/texture_cache/util.cpp b/src/video_core/texture_cache/util.cpp index 2c42d1449..c22dd0148 100644 --- a/src/video_core/texture_cache/util.cpp +++ b/src/video_core/texture_cache/util.cpp @@ -47,7 +47,6 @@ #include "video_core/texture_cache/formatter.h" #include "video_core/texture_cache/samples_helper.h" #include "video_core/texture_cache/util.h" -#include "video_core/textures/astc.h" #include "video_core/textures/decoders.h" namespace VideoCommon { @@ -879,17 +878,8 @@ void ConvertImage(std::span<const u8> input, const ImageInfo& info, std::span<u8 ASSERT(copy.image_extent == mip_size); ASSERT(copy.buffer_row_length == Common::AlignUp(mip_size.width, tile_size.width)); ASSERT(copy.buffer_image_height == Common::AlignUp(mip_size.height, tile_size.height)); - - if (IsPixelFormatASTC(info.format)) { - ASSERT(copy.image_extent.depth == 1); - Tegra::Texture::ASTC::Decompress(input.subspan(copy.buffer_offset), - copy.image_extent.width, copy.image_extent.height, - copy.image_subresource.num_layers, tile_size.width, - tile_size.height, output.subspan(output_offset)); - } else { - DecompressBC4(input.subspan(copy.buffer_offset), copy.image_extent, - output.subspan(output_offset)); - } + DecompressBC4(input.subspan(copy.buffer_offset), copy.image_extent, + output.subspan(output_offset)); copy.buffer_offset = output_offset; copy.buffer_row_length = mip_size.width; copy.buffer_image_height = mip_size.height; diff --git a/src/video_core/textures/astc.cpp b/src/video_core/textures/astc.cpp deleted file mode 100644 index 3625b666c..000000000 --- a/src/video_core/textures/astc.cpp +++ /dev/null @@ -1,1710 +0,0 @@ -// Copyright 2016 The University of North Carolina at Chapel Hill -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. -// -// Please send all BUG REPORTS to <pavel@cs.unc.edu>. -// <http://gamma.cs.unc.edu/FasTC/> - -#include <algorithm> -#include <cassert> -#include <cstring> -#include <span> -#include <vector> - -#include <boost/container/static_vector.hpp> - -#include "common/common_types.h" - -#include "video_core/textures/astc.h" - -namespace { - -/// Count the number of bits set in a number. -constexpr u32 Popcnt(u32 n) { - u32 c = 0; - for (; n; c++) { - n &= n - 1; - } - return c; -} - -} // Anonymous namespace - -class InputBitStream { -public: - constexpr explicit InputBitStream(std::span<const u8> data, size_t start_offset = 0) - : cur_byte{data.data()}, total_bits{data.size()}, next_bit{start_offset % 8} {} - - constexpr size_t GetBitsRead() const { - return bits_read; - } - - constexpr bool ReadBit() { - if (bits_read >= total_bits * 8) { - return 0; - } - const bool bit = ((*cur_byte >> next_bit) & 1) != 0; - ++next_bit; - while (next_bit >= 8) { - next_bit -= 8; - ++cur_byte; - } - ++bits_read; - return bit; - } - - constexpr u32 ReadBits(std::size_t nBits) { - u32 ret = 0; - for (std::size_t i = 0; i < nBits; ++i) { - ret |= (ReadBit() & 1) << i; - } - return ret; - } - - template <std::size_t nBits> - constexpr u32 ReadBits() { - u32 ret = 0; - for (std::size_t i = 0; i < nBits; ++i) { - ret |= (ReadBit() & 1) << i; - } - return ret; - } - -private: - const u8* cur_byte; - size_t total_bits = 0; - size_t next_bit = 0; - size_t bits_read = 0; -}; - -class OutputBitStream { -public: - constexpr explicit OutputBitStream(u8* ptr, std::size_t bits = 0, std::size_t start_offset = 0) - : cur_byte{ptr}, num_bits{bits}, next_bit{start_offset % 8} {} - - constexpr std::size_t GetBitsWritten() const { - return bits_written; - } - - constexpr void WriteBitsR(u32 val, u32 nBits) { - for (u32 i = 0; i < nBits; i++) { - WriteBit((val >> (nBits - i - 1)) & 1); - } - } - - constexpr void WriteBits(u32 val, u32 nBits) { - for (u32 i = 0; i < nBits; i++) { - WriteBit((val >> i) & 1); - } - } - -private: - constexpr void WriteBit(bool b) { - if (bits_written >= num_bits) { - return; - } - - const u32 mask = 1 << next_bit++; - - // clear the bit - *cur_byte &= static_cast<u8>(~mask); - - // Write the bit, if necessary - if (b) - *cur_byte |= static_cast<u8>(mask); - - // Next byte? - if (next_bit >= 8) { - cur_byte += 1; - next_bit = 0; - } - } - - u8* cur_byte; - std::size_t num_bits; - std::size_t bits_written = 0; - std::size_t next_bit = 0; -}; - -template <typename IntType> -class Bits { -public: - explicit Bits(const IntType& v) : m_Bits(v) {} - - Bits(const Bits&) = delete; - Bits& operator=(const Bits&) = delete; - - u8 operator[](u32 bitPos) const { - return static_cast<u8>((m_Bits >> bitPos) & 1); - } - - IntType operator()(u32 start, u32 end) const { - if (start == end) { - return (*this)[start]; - } else if (start > end) { - u32 t = start; - start = end; - end = t; - } - - u64 mask = (1 << (end - start + 1)) - 1; - return (m_Bits >> start) & static_cast<IntType>(mask); - } - -private: - const IntType& m_Bits; -}; - -enum class IntegerEncoding { JustBits, Qus32, Trit }; - -struct IntegerEncodedValue { - constexpr IntegerEncodedValue() = default; - - constexpr IntegerEncodedValue(IntegerEncoding encoding_, u32 num_bits_) - : encoding{encoding_}, num_bits{num_bits_} {} - - constexpr bool MatchesEncoding(const IntegerEncodedValue& other) const { - return encoding == other.encoding && num_bits == other.num_bits; - } - - // Returns the number of bits required to encode nVals values. - u32 GetBitLength(u32 nVals) const { - u32 totalBits = num_bits * nVals; - if (encoding == IntegerEncoding::Trit) { - totalBits += (nVals * 8 + 4) / 5; - } else if (encoding == IntegerEncoding::Qus32) { - totalBits += (nVals * 7 + 2) / 3; - } - return totalBits; - } - - IntegerEncoding encoding{}; - u32 num_bits = 0; - u32 bit_value = 0; - union { - u32 qus32_value = 0; - u32 trit_value; - }; -}; -using IntegerEncodedVector = boost::container::static_vector< - IntegerEncodedValue, 256, - boost::container::static_vector_options< - boost::container::inplace_alignment<alignof(IntegerEncodedValue)>, - boost::container::throw_on_overflow<false>>::type>; - -static void DecodeTritBlock(InputBitStream& bits, IntegerEncodedVector& result, u32 nBitsPerValue) { - // Implement the algorithm in section C.2.12 - std::array<u32, 5> m; - std::array<u32, 5> t; - u32 T; - - // Read the trit encoded block according to - // table C.2.14 - m[0] = bits.ReadBits(nBitsPerValue); - T = bits.ReadBits<2>(); - m[1] = bits.ReadBits(nBitsPerValue); - T |= bits.ReadBits<2>() << 2; - m[2] = bits.ReadBits(nBitsPerValue); - T |= bits.ReadBit() << 4; - m[3] = bits.ReadBits(nBitsPerValue); - T |= bits.ReadBits<2>() << 5; - m[4] = bits.ReadBits(nBitsPerValue); - T |= bits.ReadBit() << 7; - - u32 C = 0; - - Bits<u32> Tb(T); - if (Tb(2, 4) == 7) { - C = (Tb(5, 7) << 2) | Tb(0, 1); - t[4] = t[3] = 2; - } else { - C = Tb(0, 4); - if (Tb(5, 6) == 3) { - t[4] = 2; - t[3] = Tb[7]; - } else { - t[4] = Tb[7]; - t[3] = Tb(5, 6); - } - } - - Bits<u32> Cb(C); - if (Cb(0, 1) == 3) { - t[2] = 2; - t[1] = Cb[4]; - t[0] = (Cb[3] << 1) | (Cb[2] & ~Cb[3]); - } else if (Cb(2, 3) == 3) { - t[2] = 2; - t[1] = 2; - t[0] = Cb(0, 1); - } else { - t[2] = Cb[4]; - t[1] = Cb(2, 3); - t[0] = (Cb[1] << 1) | (Cb[0] & ~Cb[1]); - } - - for (std::size_t i = 0; i < 5; ++i) { - IntegerEncodedValue& val = result.emplace_back(IntegerEncoding::Trit, nBitsPerValue); - val.bit_value = m[i]; - val.trit_value = t[i]; - } -} - -static void DecodeQus32Block(InputBitStream& bits, IntegerEncodedVector& result, - u32 nBitsPerValue) { - // Implement the algorithm in section C.2.12 - u32 m[3]; - u32 q[3]; - u32 Q; - - // Read the trit encoded block according to - // table C.2.15 - m[0] = bits.ReadBits(nBitsPerValue); - Q = bits.ReadBits<3>(); - m[1] = bits.ReadBits(nBitsPerValue); - Q |= bits.ReadBits<2>() << 3; - m[2] = bits.ReadBits(nBitsPerValue); - Q |= bits.ReadBits<2>() << 5; - - Bits<u32> Qb(Q); - if (Qb(1, 2) == 3 && Qb(5, 6) == 0) { - q[0] = q[1] = 4; - q[2] = (Qb[0] << 2) | ((Qb[4] & ~Qb[0]) << 1) | (Qb[3] & ~Qb[0]); - } else { - u32 C = 0; - if (Qb(1, 2) == 3) { - q[2] = 4; - C = (Qb(3, 4) << 3) | ((~Qb(5, 6) & 3) << 1) | Qb[0]; - } else { - q[2] = Qb(5, 6); - C = Qb(0, 4); - } - - Bits<u32> Cb(C); - if (Cb(0, 2) == 5) { - q[1] = 4; - q[0] = Cb(3, 4); - } else { - q[1] = Cb(3, 4); - q[0] = Cb(0, 2); - } - } - - for (std::size_t i = 0; i < 3; ++i) { - IntegerEncodedValue& val = result.emplace_back(IntegerEncoding::Qus32, nBitsPerValue); - val.bit_value = m[i]; - val.qus32_value = q[i]; - } -} - -// Returns a new instance of this struct that corresponds to the -// can take no more than maxval values -static constexpr IntegerEncodedValue CreateEncoding(u32 maxVal) { - while (maxVal > 0) { - u32 check = maxVal + 1; - - // Is maxVal a power of two? - if (!(check & (check - 1))) { - return IntegerEncodedValue(IntegerEncoding::JustBits, Popcnt(maxVal)); - } - - // Is maxVal of the type 3*2^n - 1? - if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1))) { - return IntegerEncodedValue(IntegerEncoding::Trit, Popcnt(check / 3 - 1)); - } - - // Is maxVal of the type 5*2^n - 1? - if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1))) { - return IntegerEncodedValue(IntegerEncoding::Qus32, Popcnt(check / 5 - 1)); - } - - // Apparently it can't be represented with a bounded integer sequence... - // just iterate. - maxVal--; - } - return IntegerEncodedValue(IntegerEncoding::JustBits, 0); -} - -static constexpr std::array<IntegerEncodedValue, 256> MakeEncodedValues() { - std::array<IntegerEncodedValue, 256> encodings{}; - for (std::size_t i = 0; i < encodings.size(); ++i) { - encodings[i] = CreateEncoding(static_cast<u32>(i)); - } - return encodings; -} - -static constexpr std::array EncodingsValues = MakeEncodedValues(); - -// Fills result with the values that are encoded in the given -// bitstream. We must know beforehand what the maximum possible -// value is, and how many values we're decoding. -static void DecodeIntegerSequence(IntegerEncodedVector& result, InputBitStream& bits, u32 maxRange, - u32 nValues) { - // Determine encoding parameters - IntegerEncodedValue val = EncodingsValues[maxRange]; - - // Start decoding - u32 nValsDecoded = 0; - while (nValsDecoded < nValues) { - switch (val.encoding) { - case IntegerEncoding::Qus32: - DecodeQus32Block(bits, result, val.num_bits); - nValsDecoded += 3; - break; - - case IntegerEncoding::Trit: - DecodeTritBlock(bits, result, val.num_bits); - nValsDecoded += 5; - break; - - case IntegerEncoding::JustBits: - val.bit_value = bits.ReadBits(val.num_bits); - result.push_back(val); - nValsDecoded++; - break; - } - } -} - -namespace ASTCC { - -struct TexelWeightParams { - u32 m_Width = 0; - u32 m_Height = 0; - bool m_bDualPlane = false; - u32 m_MaxWeight = 0; - bool m_bError = false; - bool m_bVoidExtentLDR = false; - bool m_bVoidExtentHDR = false; - - u32 GetPackedBitSize() const { - // How many indices do we have? - u32 nIdxs = m_Height * m_Width; - if (m_bDualPlane) { - nIdxs *= 2; - } - - return EncodingsValues[m_MaxWeight].GetBitLength(nIdxs); - } - - u32 GetNumWeightValues() const { - u32 ret = m_Width * m_Height; - if (m_bDualPlane) { - ret *= 2; - } - return ret; - } -}; - -static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) { - TexelWeightParams params; - - // Read the entire block mode all at once - u16 modeBits = static_cast<u16>(strm.ReadBits<11>()); - - // Does this match the void extent block mode? - if ((modeBits & 0x01FF) == 0x1FC) { - if (modeBits & 0x200) { - params.m_bVoidExtentHDR = true; - } else { - params.m_bVoidExtentLDR = true; - } - - // Next two bits must be one. - if (!(modeBits & 0x400) || !strm.ReadBit()) { - params.m_bError = true; - } - - return params; - } - - // First check if the last four bits are zero - if ((modeBits & 0xF) == 0) { - params.m_bError = true; - return params; - } - - // If the last two bits are zero, then if bits - // [6-8] are all ones, this is also reserved. - if ((modeBits & 0x3) == 0 && (modeBits & 0x1C0) == 0x1C0) { - params.m_bError = true; - return params; - } - - // Otherwise, there is no error... Figure out the layout - // of the block mode. Layout is determined by a number - // between 0 and 9 corresponding to table C.2.8 of the - // ASTC spec. - u32 layout = 0; - - if ((modeBits & 0x1) || (modeBits & 0x2)) { - // layout is in [0-4] - if (modeBits & 0x8) { - // layout is in [2-4] - if (modeBits & 0x4) { - // layout is in [3-4] - if (modeBits & 0x100) { - layout = 4; - } else { - layout = 3; - } - } else { - layout = 2; - } - } else { - // layout is in [0-1] - if (modeBits & 0x4) { - layout = 1; - } else { - layout = 0; - } - } - } else { - // layout is in [5-9] - if (modeBits & 0x100) { - // layout is in [7-9] - if (modeBits & 0x80) { - // layout is in [7-8] - assert((modeBits & 0x40) == 0U); - if (modeBits & 0x20) { - layout = 8; - } else { - layout = 7; - } - } else { - layout = 9; - } - } else { - // layout is in [5-6] - if (modeBits & 0x80) { - layout = 6; - } else { - layout = 5; - } - } - } - - assert(layout < 10); - - // Determine R - u32 R = !!(modeBits & 0x10); - if (layout < 5) { - R |= (modeBits & 0x3) << 1; - } else { - R |= (modeBits & 0xC) >> 1; - } - assert(2 <= R && R <= 7); - - // Determine width & height - switch (layout) { - case 0: { - u32 A = (modeBits >> 5) & 0x3; - u32 B = (modeBits >> 7) & 0x3; - params.m_Width = B + 4; - params.m_Height = A + 2; - break; - } - - case 1: { - u32 A = (modeBits >> 5) & 0x3; - u32 B = (modeBits >> 7) & 0x3; - params.m_Width = B + 8; - params.m_Height = A + 2; - break; - } - - case 2: { - u32 A = (modeBits >> 5) & 0x3; - u32 B = (modeBits >> 7) & 0x3; - params.m_Width = A + 2; - params.m_Height = B + 8; - break; - } - - case 3: { - u32 A = (modeBits >> 5) & 0x3; - u32 B = (modeBits >> 7) & 0x1; - params.m_Width = A + 2; - params.m_Height = B + 6; - break; - } - - case 4: { - u32 A = (modeBits >> 5) & 0x3; - u32 B = (modeBits >> 7) & 0x1; - params.m_Width = B + 2; - params.m_Height = A + 2; - break; - } - - case 5: { - u32 A = (modeBits >> 5) & 0x3; - params.m_Width = 12; - params.m_Height = A + 2; - break; - } - - case 6: { - u32 A = (modeBits >> 5) & 0x3; - params.m_Width = A + 2; - params.m_Height = 12; - break; - } - - case 7: { - params.m_Width = 6; - params.m_Height = 10; - break; - } - - case 8: { - params.m_Width = 10; - params.m_Height = 6; - break; - } - - case 9: { - u32 A = (modeBits >> 5) & 0x3; - u32 B = (modeBits >> 9) & 0x3; - params.m_Width = A + 6; - params.m_Height = B + 6; - break; - } - - default: - assert(false && "Don't know this layout..."); - params.m_bError = true; - break; - } - - // Determine whether or not we're using dual planes - // and/or high precision layouts. - bool D = (layout != 9) && (modeBits & 0x400); - bool H = (layout != 9) && (modeBits & 0x200); - - if (H) { - const u32 maxWeights[6] = {9, 11, 15, 19, 23, 31}; - params.m_MaxWeight = maxWeights[R - 2]; - } else { - const u32 maxWeights[6] = {1, 2, 3, 4, 5, 7}; - params.m_MaxWeight = maxWeights[R - 2]; - } - - params.m_bDualPlane = D; - - return params; -} - -static void FillVoidExtentLDR(InputBitStream& strm, std::span<u32> outBuf, u32 blockWidth, - u32 blockHeight) { - // Don't actually care about the void extent, just read the bits... - for (s32 i = 0; i < 4; ++i) { - strm.ReadBits<13>(); - } - - // Decode the RGBA components and renormalize them to the range [0, 255] - u16 r = static_cast<u16>(strm.ReadBits<16>()); - u16 g = static_cast<u16>(strm.ReadBits<16>()); - u16 b = static_cast<u16>(strm.ReadBits<16>()); - u16 a = static_cast<u16>(strm.ReadBits<16>()); - - u32 rgba = (r >> 8) | (g & 0xFF00) | (static_cast<u32>(b) & 0xFF00) << 8 | - (static_cast<u32>(a) & 0xFF00) << 16; - - for (u32 j = 0; j < blockHeight; j++) { - for (u32 i = 0; i < blockWidth; i++) { - outBuf[j * blockWidth + i] = rgba; - } - } -} - -static void FillError(std::span<u32> outBuf, u32 blockWidth, u32 blockHeight) { - for (u32 j = 0; j < blockHeight; j++) { - for (u32 i = 0; i < blockWidth; i++) { - outBuf[j * blockWidth + i] = 0xFFFF00FF; - } - } -} - -// Replicates low numBits such that [(toBit - 1):(toBit - 1 - fromBit)] -// is the same as [(numBits - 1):0] and repeats all the way down. -template <typename IntType> -static constexpr IntType Replicate(IntType val, u32 numBits, u32 toBit) { - if (numBits == 0) { - return 0; - } - if (toBit == 0) { - return 0; - } - const IntType v = val & static_cast<IntType>((1 << numBits) - 1); - IntType res = v; - u32 reslen = numBits; - while (reslen < toBit) { - u32 comp = 0; - if (numBits > toBit - reslen) { - u32 newshift = toBit - reslen; - comp = numBits - newshift; - numBits = newshift; - } - res = static_cast<IntType>(res << numBits); - res = static_cast<IntType>(res | (v >> comp)); - reslen += numBits; - } - return res; -} - -static constexpr std::size_t NumReplicateEntries(u32 num_bits) { - return std::size_t(1) << num_bits; -} - -template <typename IntType, u32 num_bits, u32 to_bit> -static constexpr auto MakeReplicateTable() { - std::array<IntType, NumReplicateEntries(num_bits)> table{}; - for (IntType value = 0; value < static_cast<IntType>(std::size(table)); ++value) { - table[value] = Replicate(value, num_bits, to_bit); - } - return table; -} - -static constexpr auto REPLICATE_BYTE_TO_16_TABLE = MakeReplicateTable<u32, 8, 16>(); -static constexpr u32 ReplicateByteTo16(std::size_t value) { - return REPLICATE_BYTE_TO_16_TABLE[value]; -} - -static constexpr auto REPLICATE_BIT_TO_7_TABLE = MakeReplicateTable<u32, 1, 7>(); -static constexpr u32 ReplicateBitTo7(std::size_t value) { - return REPLICATE_BIT_TO_7_TABLE[value]; -} - -static constexpr auto REPLICATE_BIT_TO_9_TABLE = MakeReplicateTable<u32, 1, 9>(); -static constexpr u32 ReplicateBitTo9(std::size_t value) { - return REPLICATE_BIT_TO_9_TABLE[value]; -} - -static constexpr auto REPLICATE_1_BIT_TO_8_TABLE = MakeReplicateTable<u32, 1, 8>(); -static constexpr auto REPLICATE_2_BIT_TO_8_TABLE = MakeReplicateTable<u32, 2, 8>(); -static constexpr auto REPLICATE_3_BIT_TO_8_TABLE = MakeReplicateTable<u32, 3, 8>(); -static constexpr auto REPLICATE_4_BIT_TO_8_TABLE = MakeReplicateTable<u32, 4, 8>(); -static constexpr auto REPLICATE_5_BIT_TO_8_TABLE = MakeReplicateTable<u32, 5, 8>(); -static constexpr auto REPLICATE_6_BIT_TO_8_TABLE = MakeReplicateTable<u32, 6, 8>(); -static constexpr auto REPLICATE_7_BIT_TO_8_TABLE = MakeReplicateTable<u32, 7, 8>(); -static constexpr auto REPLICATE_8_BIT_TO_8_TABLE = MakeReplicateTable<u32, 8, 8>(); -/// Use a precompiled table with the most common usages, if it's not in the expected range, fallback -/// to the runtime implementation -static constexpr u32 FastReplicateTo8(u32 value, u32 num_bits) { - switch (num_bits) { - case 1: - return REPLICATE_1_BIT_TO_8_TABLE[value]; - case 2: - return REPLICATE_2_BIT_TO_8_TABLE[value]; - case 3: - return REPLICATE_3_BIT_TO_8_TABLE[value]; - case 4: - return REPLICATE_4_BIT_TO_8_TABLE[value]; - case 5: - return REPLICATE_5_BIT_TO_8_TABLE[value]; - case 6: - return REPLICATE_6_BIT_TO_8_TABLE[value]; - case 7: - return REPLICATE_7_BIT_TO_8_TABLE[value]; - case 8: - return REPLICATE_8_BIT_TO_8_TABLE[value]; - default: - return Replicate(value, num_bits, 8); - } -} - -static constexpr auto REPLICATE_1_BIT_TO_6_TABLE = MakeReplicateTable<u32, 1, 6>(); -static constexpr auto REPLICATE_2_BIT_TO_6_TABLE = MakeReplicateTable<u32, 2, 6>(); -static constexpr auto REPLICATE_3_BIT_TO_6_TABLE = MakeReplicateTable<u32, 3, 6>(); -static constexpr auto REPLICATE_4_BIT_TO_6_TABLE = MakeReplicateTable<u32, 4, 6>(); -static constexpr auto REPLICATE_5_BIT_TO_6_TABLE = MakeReplicateTable<u32, 5, 6>(); -static constexpr u32 FastReplicateTo6(u32 value, u32 num_bits) { - switch (num_bits) { - case 1: - return REPLICATE_1_BIT_TO_6_TABLE[value]; - case 2: - return REPLICATE_2_BIT_TO_6_TABLE[value]; - case 3: - return REPLICATE_3_BIT_TO_6_TABLE[value]; - case 4: - return REPLICATE_4_BIT_TO_6_TABLE[value]; - case 5: - return REPLICATE_5_BIT_TO_6_TABLE[value]; - default: - return Replicate(value, num_bits, 6); - } -} - -class Pixel { -protected: - using ChannelType = s16; - u8 m_BitDepth[4] = {8, 8, 8, 8}; - s16 color[4] = {}; - -public: - Pixel() = default; - Pixel(u32 a, u32 r, u32 g, u32 b, u32 bitDepth = 8) - : m_BitDepth{u8(bitDepth), u8(bitDepth), u8(bitDepth), u8(bitDepth)}, - color{static_cast<ChannelType>(a), static_cast<ChannelType>(r), - static_cast<ChannelType>(g), static_cast<ChannelType>(b)} {} - - // Changes the depth of each pixel. This scales the values to - // the appropriate bit depth by either truncating the least - // significant bits when going from larger to smaller bit depth - // or by repeating the most significant bits when going from - // smaller to larger bit depths. - void ChangeBitDepth() { - for (u32 i = 0; i < 4; i++) { - Component(i) = ChangeBitDepth(Component(i), m_BitDepth[i]); - m_BitDepth[i] = 8; - } - } - - template <typename IntType> - static float ConvertChannelToFloat(IntType channel, u8 bitDepth) { - float denominator = static_cast<float>((1 << bitDepth) - 1); - return static_cast<float>(channel) / denominator; - } - - // Changes the bit depth of a single component. See the comment - // above for how we do this. - static ChannelType ChangeBitDepth(Pixel::ChannelType val, u8 oldDepth) { - assert(oldDepth <= 8); - - if (oldDepth == 8) { - // Do nothing - return val; - } else if (oldDepth == 0) { - return static_cast<ChannelType>((1 << 8) - 1); - } else if (8 > oldDepth) { - return static_cast<ChannelType>(FastReplicateTo8(static_cast<u32>(val), oldDepth)); - } else { - // oldDepth > newDepth - const u8 bitsWasted = static_cast<u8>(oldDepth - 8); - u16 v = static_cast<u16>(val); - v = static_cast<u16>((v + (1 << (bitsWasted - 1))) >> bitsWasted); - v = ::std::min<u16>(::std::max<u16>(0, v), static_cast<u16>((1 << 8) - 1)); - return static_cast<u8>(v); - } - - assert(false && "We shouldn't get here."); - return 0; - } - - const ChannelType& A() const { - return color[0]; - } - ChannelType& A() { - return color[0]; - } - const ChannelType& R() const { - return color[1]; - } - ChannelType& R() { - return color[1]; - } - const ChannelType& G() const { - return color[2]; - } - ChannelType& G() { - return color[2]; - } - const ChannelType& B() const { - return color[3]; - } - ChannelType& B() { - return color[3]; - } - const ChannelType& Component(u32 idx) const { - return color[idx]; - } - ChannelType& Component(u32 idx) { - return color[idx]; - } - - void GetBitDepth(u8 (&outDepth)[4]) const { - for (s32 i = 0; i < 4; i++) { - outDepth[i] = m_BitDepth[i]; - } - } - - // Take all of the components, transform them to their 8-bit variants, - // and then pack each channel into an R8G8B8A8 32-bit integer. We assume - // that the architecture is little-endian, so the alpha channel will end - // up in the most-significant byte. - u32 Pack() const { - Pixel eightBit(*this); - eightBit.ChangeBitDepth(); - - u32 r = 0; - r |= eightBit.A(); - r <<= 8; - r |= eightBit.B(); - r <<= 8; - r |= eightBit.G(); - r <<= 8; - r |= eightBit.R(); - return r; - } - - // Clamps the pixel to the range [0,255] - void ClampByte() { - for (u32 i = 0; i < 4; i++) { - color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]); - } - } - - void MakeOpaque() { - A() = 255; - } -}; - -static void DecodeColorValues(u32* out, std::span<u8> data, const u32* modes, const u32 nPartitions, - const u32 nBitsForColorData) { - // First figure out how many color values we have - u32 nValues = 0; - for (u32 i = 0; i < nPartitions; i++) { - nValues += ((modes[i] >> 2) + 1) << 1; - } - - // Then based on the number of values and the remaining number of bits, - // figure out the max value for each of them... - u32 range = 256; - while (--range > 0) { - IntegerEncodedValue val = EncodingsValues[range]; - u32 bitLength = val.GetBitLength(nValues); - if (bitLength <= nBitsForColorData) { - // Find the smallest possible range that matches the given encoding - while (--range > 0) { - IntegerEncodedValue newval = EncodingsValues[range]; - if (!newval.MatchesEncoding(val)) { - break; - } - } - - // Return to last matching range. - range++; - break; - } - } - - // We now have enough to decode our integer sequence. - IntegerEncodedVector decodedColorValues; - - InputBitStream colorStream(data, 0); - DecodeIntegerSequence(decodedColorValues, colorStream, range, nValues); - - // Once we have the decoded values, we need to dequantize them to the 0-255 range - // This procedure is outlined in ASTC spec C.2.13 - u32 outIdx = 0; - for (auto itr = decodedColorValues.begin(); itr != decodedColorValues.end(); ++itr) { - // Have we already decoded all that we need? - if (outIdx >= nValues) { - break; - } - - const IntegerEncodedValue& val = *itr; - u32 bitlen = val.num_bits; - u32 bitval = val.bit_value; - - assert(bitlen >= 1); - - u32 A = 0, B = 0, C = 0, D = 0; - // A is just the lsb replicated 9 times. - A = ReplicateBitTo9(bitval & 1); - - switch (val.encoding) { - // Replicate bits - case IntegerEncoding::JustBits: - out[outIdx++] = FastReplicateTo8(bitval, bitlen); - break; - - // Use algorithm in C.2.13 - case IntegerEncoding::Trit: { - - D = val.trit_value; - - switch (bitlen) { - case 1: { - C = 204; - } break; - - case 2: { - C = 93; - // B = b000b0bb0 - u32 b = (bitval >> 1) & 1; - B = (b << 8) | (b << 4) | (b << 2) | (b << 1); - } break; - - case 3: { - C = 44; - // B = cb000cbcb - u32 cb = (bitval >> 1) & 3; - B = (cb << 7) | (cb << 2) | cb; - } break; - - case 4: { - C = 22; - // B = dcb000dcb - u32 dcb = (bitval >> 1) & 7; - B = (dcb << 6) | dcb; - } break; - - case 5: { - C = 11; - // B = edcb000ed - u32 edcb = (bitval >> 1) & 0xF; - B = (edcb << 5) | (edcb >> 2); - } break; - - case 6: { - C = 5; - // B = fedcb000f - u32 fedcb = (bitval >> 1) & 0x1F; - B = (fedcb << 4) | (fedcb >> 4); - } break; - - default: - assert(false && "Unsupported trit encoding for color values!"); - break; - } // switch(bitlen) - } // case IntegerEncoding::Trit - break; - - case IntegerEncoding::Qus32: { - - D = val.qus32_value; - - switch (bitlen) { - case 1: { - C = 113; - } break; - - case 2: { - C = 54; - // B = b0000bb00 - u32 b = (bitval >> 1) & 1; - B = (b << 8) | (b << 3) | (b << 2); - } break; - - case 3: { - C = 26; - // B = cb0000cbc - u32 cb = (bitval >> 1) & 3; - B = (cb << 7) | (cb << 1) | (cb >> 1); - } break; - - case 4: { - C = 13; - // B = dcb0000dc - u32 dcb = (bitval >> 1) & 7; - B = (dcb << 6) | (dcb >> 1); - } break; - - case 5: { - C = 6; - // B = edcb0000e - u32 edcb = (bitval >> 1) & 0xF; - B = (edcb << 5) | (edcb >> 3); - } break; - - default: - assert(false && "Unsupported quint encoding for color values!"); - break; - } // switch(bitlen) - } // case IntegerEncoding::Qus32 - break; - } // switch(val.encoding) - - if (val.encoding != IntegerEncoding::JustBits) { - u32 T = D * C + B; - T ^= A; - T = (A & 0x80) | (T >> 2); - out[outIdx++] = T; - } - } - - // Make sure that each of our values is in the proper range... - for (u32 i = 0; i < nValues; i++) { - assert(out[i] <= 255); - } -} - -static u32 UnquantizeTexelWeight(const IntegerEncodedValue& val) { - u32 bitval = val.bit_value; - u32 bitlen = val.num_bits; - - u32 A = ReplicateBitTo7(bitval & 1); - u32 B = 0, C = 0, D = 0; - - u32 result = 0; - switch (val.encoding) { - case IntegerEncoding::JustBits: - result = FastReplicateTo6(bitval, bitlen); - break; - - case IntegerEncoding::Trit: { - D = val.trit_value; - assert(D < 3); - - switch (bitlen) { - case 0: { - u32 results[3] = {0, 32, 63}; - result = results[D]; - } break; - - case 1: { - C = 50; - } break; - - case 2: { - C = 23; - u32 b = (bitval >> 1) & 1; - B = (b << 6) | (b << 2) | b; - } break; - - case 3: { - C = 11; - u32 cb = (bitval >> 1) & 3; - B = (cb << 5) | cb; - } break; - - default: - assert(false && "Invalid trit encoding for texel weight"); - break; - } - } break; - - case IntegerEncoding::Qus32: { - D = val.qus32_value; - assert(D < 5); - - switch (bitlen) { - case 0: { - u32 results[5] = {0, 16, 32, 47, 63}; - result = results[D]; - } break; - - case 1: { - C = 28; - } break; - - case 2: { - C = 13; - u32 b = (bitval >> 1) & 1; - B = (b << 6) | (b << 1); - } break; - - default: - assert(false && "Invalid quint encoding for texel weight"); - break; - } - } break; - } - - if (val.encoding != IntegerEncoding::JustBits && bitlen > 0) { - // Decode the value... - result = D * C + B; - result ^= A; - result = (A & 0x20) | (result >> 2); - } - - assert(result < 64); - - // Change from [0,63] to [0,64] - if (result > 32) { - result += 1; - } - - return result; -} - -static void UnquantizeTexelWeights(u32 out[2][144], const IntegerEncodedVector& weights, - const TexelWeightParams& params, const u32 blockWidth, - const u32 blockHeight) { - u32 weightIdx = 0; - u32 unquantized[2][144]; - - for (auto itr = weights.begin(); itr != weights.end(); ++itr) { - unquantized[0][weightIdx] = UnquantizeTexelWeight(*itr); - - if (params.m_bDualPlane) { - ++itr; - unquantized[1][weightIdx] = UnquantizeTexelWeight(*itr); - if (itr == weights.end()) { - break; - } - } - - if (++weightIdx >= (params.m_Width * params.m_Height)) - break; - } - - // Do infill if necessary (Section C.2.18) ... - u32 Ds = (1024 + (blockWidth / 2)) / (blockWidth - 1); - u32 Dt = (1024 + (blockHeight / 2)) / (blockHeight - 1); - - const u32 kPlaneScale = params.m_bDualPlane ? 2U : 1U; - for (u32 plane = 0; plane < kPlaneScale; plane++) - for (u32 t = 0; t < blockHeight; t++) - for (u32 s = 0; s < blockWidth; s++) { - u32 cs = Ds * s; - u32 ct = Dt * t; - - u32 gs = (cs * (params.m_Width - 1) + 32) >> 6; - u32 gt = (ct * (params.m_Height - 1) + 32) >> 6; - - u32 js = gs >> 4; - u32 fs = gs & 0xF; - - u32 jt = gt >> 4; - u32 ft = gt & 0x0F; - - u32 w11 = (fs * ft + 8) >> 4; - u32 w10 = ft - w11; - u32 w01 = fs - w11; - u32 w00 = 16 - fs - ft + w11; - - u32 v0 = js + jt * params.m_Width; - -#define FIND_TEXEL(tidx, bidx) \ - u32 p##bidx = 0; \ - do { \ - if ((tidx) < (params.m_Width * params.m_Height)) { \ - p##bidx = unquantized[plane][(tidx)]; \ - } \ - } while (0) - - FIND_TEXEL(v0, 00); - FIND_TEXEL(v0 + 1, 01); - FIND_TEXEL(v0 + params.m_Width, 10); - FIND_TEXEL(v0 + params.m_Width + 1, 11); - -#undef FIND_TEXEL - - out[plane][t * blockWidth + s] = - (p00 * w00 + p01 * w01 + p10 * w10 + p11 * w11 + 8) >> 4; - } -} - -// Transfers a bit as described in C.2.14 -static inline void BitTransferSigned(s32& a, s32& b) { - b >>= 1; - b |= a & 0x80; - a >>= 1; - a &= 0x3F; - if (a & 0x20) - a -= 0x40; -} - -// Adds more precision to the blue channel as described -// in C.2.14 -static inline Pixel BlueContract(s32 a, s32 r, s32 g, s32 b) { - return Pixel(static_cast<s16>(a), static_cast<s16>((r + b) >> 1), - static_cast<s16>((g + b) >> 1), static_cast<s16>(b)); -} - -// Partition selection functions as specified in -// C.2.21 -static inline u32 hash52(u32 p) { - p ^= p >> 15; - p -= p << 17; - p += p << 7; - p += p << 4; - p ^= p >> 5; - p += p << 16; - p ^= p >> 7; - p ^= p >> 3; - p ^= p << 6; - p ^= p >> 17; - return p; -} - -static u32 SelectPartition(s32 seed, s32 x, s32 y, s32 z, s32 partitionCount, s32 smallBlock) { - if (1 == partitionCount) - return 0; - - if (smallBlock) { - x <<= 1; - y <<= 1; - z <<= 1; - } - - seed += (partitionCount - 1) * 1024; - - u32 rnum = hash52(static_cast<u32>(seed)); - u8 seed1 = static_cast<u8>(rnum & 0xF); - u8 seed2 = static_cast<u8>((rnum >> 4) & 0xF); - u8 seed3 = static_cast<u8>((rnum >> 8) & 0xF); - u8 seed4 = static_cast<u8>((rnum >> 12) & 0xF); - u8 seed5 = static_cast<u8>((rnum >> 16) & 0xF); - u8 seed6 = static_cast<u8>((rnum >> 20) & 0xF); - u8 seed7 = static_cast<u8>((rnum >> 24) & 0xF); - u8 seed8 = static_cast<u8>((rnum >> 28) & 0xF); - u8 seed9 = static_cast<u8>((rnum >> 18) & 0xF); - u8 seed10 = static_cast<u8>((rnum >> 22) & 0xF); - u8 seed11 = static_cast<u8>((rnum >> 26) & 0xF); - u8 seed12 = static_cast<u8>(((rnum >> 30) | (rnum << 2)) & 0xF); - - seed1 = static_cast<u8>(seed1 * seed1); - seed2 = static_cast<u8>(seed2 * seed2); - seed3 = static_cast<u8>(seed3 * seed3); - seed4 = static_cast<u8>(seed4 * seed4); - seed5 = static_cast<u8>(seed5 * seed5); - seed6 = static_cast<u8>(seed6 * seed6); - seed7 = static_cast<u8>(seed7 * seed7); - seed8 = static_cast<u8>(seed8 * seed8); - seed9 = static_cast<u8>(seed9 * seed9); - seed10 = static_cast<u8>(seed10 * seed10); - seed11 = static_cast<u8>(seed11 * seed11); - seed12 = static_cast<u8>(seed12 * seed12); - - s32 sh1, sh2, sh3; - if (seed & 1) { - sh1 = (seed & 2) ? 4 : 5; - sh2 = (partitionCount == 3) ? 6 : 5; - } else { - sh1 = (partitionCount == 3) ? 6 : 5; - sh2 = (seed & 2) ? 4 : 5; - } - sh3 = (seed & 0x10) ? sh1 : sh2; - - seed1 = static_cast<u8>(seed1 >> sh1); - seed2 = static_cast<u8>(seed2 >> sh2); - seed3 = static_cast<u8>(seed3 >> sh1); - seed4 = static_cast<u8>(seed4 >> sh2); - seed5 = static_cast<u8>(seed5 >> sh1); - seed6 = static_cast<u8>(seed6 >> sh2); - seed7 = static_cast<u8>(seed7 >> sh1); - seed8 = static_cast<u8>(seed8 >> sh2); - seed9 = static_cast<u8>(seed9 >> sh3); - seed10 = static_cast<u8>(seed10 >> sh3); - seed11 = static_cast<u8>(seed11 >> sh3); - seed12 = static_cast<u8>(seed12 >> sh3); - - s32 a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14); - s32 b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10); - s32 c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6); - s32 d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2); - - a &= 0x3F; - b &= 0x3F; - c &= 0x3F; - d &= 0x3F; - - if (partitionCount < 4) - d = 0; - if (partitionCount < 3) - c = 0; - - if (a >= b && a >= c && a >= d) - return 0; - else if (b >= c && b >= d) - return 1; - else if (c >= d) - return 2; - return 3; -} - -static inline u32 Select2DPartition(s32 seed, s32 x, s32 y, s32 partitionCount, s32 smallBlock) { - return SelectPartition(seed, x, y, 0, partitionCount, smallBlock); -} - -// Section C.2.14 -static void ComputeEndpos32s(Pixel& ep1, Pixel& ep2, const u32*& colorValues, - u32 colorEndpos32Mode) { -#define READ_UINT_VALUES(N) \ - u32 v[N]; \ - for (u32 i = 0; i < N; i++) { \ - v[i] = *(colorValues++); \ - } - -#define READ_INT_VALUES(N) \ - s32 v[N]; \ - for (u32 i = 0; i < N; i++) { \ - v[i] = static_cast<s32>(*(colorValues++)); \ - } - - switch (colorEndpos32Mode) { - case 0: { - READ_UINT_VALUES(2) - ep1 = Pixel(0xFF, v[0], v[0], v[0]); - ep2 = Pixel(0xFF, v[1], v[1], v[1]); - } break; - - case 1: { - READ_UINT_VALUES(2) - u32 L0 = (v[0] >> 2) | (v[1] & 0xC0); - u32 L1 = std::max(L0 + (v[1] & 0x3F), 0xFFU); - ep1 = Pixel(0xFF, L0, L0, L0); - ep2 = Pixel(0xFF, L1, L1, L1); - } break; - - case 4: { - READ_UINT_VALUES(4) - ep1 = Pixel(v[2], v[0], v[0], v[0]); - ep2 = Pixel(v[3], v[1], v[1], v[1]); - } break; - - case 5: { - READ_INT_VALUES(4) - BitTransferSigned(v[1], v[0]); - BitTransferSigned(v[3], v[2]); - ep1 = Pixel(v[2], v[0], v[0], v[0]); - ep2 = Pixel(v[2] + v[3], v[0] + v[1], v[0] + v[1], v[0] + v[1]); - ep1.ClampByte(); - ep2.ClampByte(); - } break; - - case 6: { - READ_UINT_VALUES(4) - ep1 = Pixel(0xFF, v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8); - ep2 = Pixel(0xFF, v[0], v[1], v[2]); - } break; - - case 8: { - READ_UINT_VALUES(6) - if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) { - ep1 = Pixel(0xFF, v[0], v[2], v[4]); - ep2 = Pixel(0xFF, v[1], v[3], v[5]); - } else { - ep1 = BlueContract(0xFF, v[1], v[3], v[5]); - ep2 = BlueContract(0xFF, v[0], v[2], v[4]); - } - } break; - - case 9: { - READ_INT_VALUES(6) - BitTransferSigned(v[1], v[0]); - BitTransferSigned(v[3], v[2]); - BitTransferSigned(v[5], v[4]); - if (v[1] + v[3] + v[5] >= 0) { - ep1 = Pixel(0xFF, v[0], v[2], v[4]); - ep2 = Pixel(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]); - } else { - ep1 = BlueContract(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]); - ep2 = BlueContract(0xFF, v[0], v[2], v[4]); - } - ep1.ClampByte(); - ep2.ClampByte(); - } break; - - case 10: { - READ_UINT_VALUES(6) - ep1 = Pixel(v[4], v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8); - ep2 = Pixel(v[5], v[0], v[1], v[2]); - } break; - - case 12: { - READ_UINT_VALUES(8) - if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) { - ep1 = Pixel(v[6], v[0], v[2], v[4]); - ep2 = Pixel(v[7], v[1], v[3], v[5]); - } else { - ep1 = BlueContract(v[7], v[1], v[3], v[5]); - ep2 = BlueContract(v[6], v[0], v[2], v[4]); - } - } break; - - case 13: { - READ_INT_VALUES(8) - BitTransferSigned(v[1], v[0]); - BitTransferSigned(v[3], v[2]); - BitTransferSigned(v[5], v[4]); - BitTransferSigned(v[7], v[6]); - if (v[1] + v[3] + v[5] >= 0) { - ep1 = Pixel(v[6], v[0], v[2], v[4]); - ep2 = Pixel(v[7] + v[6], v[0] + v[1], v[2] + v[3], v[4] + v[5]); - } else { - ep1 = BlueContract(v[6] + v[7], v[0] + v[1], v[2] + v[3], v[4] + v[5]); - ep2 = BlueContract(v[6], v[0], v[2], v[4]); - } - ep1.ClampByte(); - ep2.ClampByte(); - } break; - - default: - assert(false && "Unsupported color endpoint mode (is it HDR?)"); - break; - } - -#undef READ_UINT_VALUES -#undef READ_INT_VALUES -} - -static void DecompressBlock(std::span<const u8, 16> inBuf, const u32 blockWidth, - const u32 blockHeight, std::span<u32, 12 * 12> outBuf) { - InputBitStream strm(inBuf); - TexelWeightParams weightParams = DecodeBlockInfo(strm); - - // Was there an error? - if (weightParams.m_bError) { - assert(false && "Invalid block mode"); - FillError(outBuf, blockWidth, blockHeight); - return; - } - - if (weightParams.m_bVoidExtentLDR) { - FillVoidExtentLDR(strm, outBuf, blockWidth, blockHeight); - return; - } - - if (weightParams.m_bVoidExtentHDR) { - assert(false && "HDR void extent blocks are unsupported!"); - FillError(outBuf, blockWidth, blockHeight); - return; - } - - if (weightParams.m_Width > blockWidth) { - assert(false && "Texel weight grid width should be smaller than block width"); - FillError(outBuf, blockWidth, blockHeight); - return; - } - - if (weightParams.m_Height > blockHeight) { - assert(false && "Texel weight grid height should be smaller than block height"); - FillError(outBuf, blockWidth, blockHeight); - return; - } - - // Read num partitions - u32 nPartitions = strm.ReadBits<2>() + 1; - assert(nPartitions <= 4); - - if (nPartitions == 4 && weightParams.m_bDualPlane) { - assert(false && "Dual plane mode is incompatible with four partition blocks"); - FillError(outBuf, blockWidth, blockHeight); - return; - } - - // Based on the number of partitions, read the color endpos32 mode for - // each partition. - - // Determine partitions, partition index, and color endpos32 modes - s32 planeIdx = -1; - u32 partitionIndex; - u32 colorEndpos32Mode[4] = {0, 0, 0, 0}; - - // Define color data. - u8 colorEndpos32Data[16]; - memset(colorEndpos32Data, 0, sizeof(colorEndpos32Data)); - OutputBitStream colorEndpos32Stream(colorEndpos32Data, 16 * 8, 0); - - // Read extra config data... - u32 baseCEM = 0; - if (nPartitions == 1) { - colorEndpos32Mode[0] = strm.ReadBits<4>(); - partitionIndex = 0; - } else { - partitionIndex = strm.ReadBits<10>(); - baseCEM = strm.ReadBits<6>(); - } - u32 baseMode = (baseCEM & 3); - - // Remaining bits are color endpos32 data... - u32 nWeightBits = weightParams.GetPackedBitSize(); - s32 remainingBits = 128 - nWeightBits - static_cast<s32>(strm.GetBitsRead()); - - // Consider extra bits prior to texel data... - u32 extraCEMbits = 0; - if (baseMode) { - switch (nPartitions) { - case 2: - extraCEMbits += 2; - break; - case 3: - extraCEMbits += 5; - break; - case 4: - extraCEMbits += 8; - break; - default: - assert(false); - break; - } - } - remainingBits -= extraCEMbits; - - // Do we have a dual plane situation? - u32 planeSelectorBits = 0; - if (weightParams.m_bDualPlane) { - planeSelectorBits = 2; - } - remainingBits -= planeSelectorBits; - - // Read color data... - u32 colorDataBits = remainingBits; - while (remainingBits > 0) { - u32 nb = std::min(remainingBits, 8); - u32 b = strm.ReadBits(nb); - colorEndpos32Stream.WriteBits(b, nb); - remainingBits -= 8; - } - - // Read the plane selection bits - planeIdx = strm.ReadBits(planeSelectorBits); - - // Read the rest of the CEM - if (baseMode) { - u32 extraCEM = strm.ReadBits(extraCEMbits); - u32 CEM = (extraCEM << 6) | baseCEM; - CEM >>= 2; - - bool C[4] = {0}; - for (u32 i = 0; i < nPartitions; i++) { - C[i] = CEM & 1; - CEM >>= 1; - } - - u8 M[4] = {0}; - for (u32 i = 0; i < nPartitions; i++) { - M[i] = CEM & 3; - CEM >>= 2; - assert(M[i] <= 3); - } - - for (u32 i = 0; i < nPartitions; i++) { - colorEndpos32Mode[i] = baseMode; - if (!(C[i])) - colorEndpos32Mode[i] -= 1; - colorEndpos32Mode[i] <<= 2; - colorEndpos32Mode[i] |= M[i]; - } - } else if (nPartitions > 1) { - u32 CEM = baseCEM >> 2; - for (u32 i = 0; i < nPartitions; i++) { - colorEndpos32Mode[i] = CEM; - } - } - - // Make sure everything up till here is sane. - for (u32 i = 0; i < nPartitions; i++) { - assert(colorEndpos32Mode[i] < 16); - } - assert(strm.GetBitsRead() + weightParams.GetPackedBitSize() == 128); - - // Decode both color data and texel weight data - u32 colorValues[32]; // Four values, two endpos32s, four maximum paritions - DecodeColorValues(colorValues, colorEndpos32Data, colorEndpos32Mode, nPartitions, - colorDataBits); - - Pixel endpos32s[4][2]; - const u32* colorValuesPtr = colorValues; - for (u32 i = 0; i < nPartitions; i++) { - ComputeEndpos32s(endpos32s[i][0], endpos32s[i][1], colorValuesPtr, colorEndpos32Mode[i]); - } - - // Read the texel weight data.. - std::array<u8, 16> texelWeightData; - std::ranges::copy(inBuf, texelWeightData.begin()); - - // Reverse everything - for (u32 i = 0; i < 8; i++) { -// Taken from http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits -#define REVERSE_BYTE(b) (((b)*0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32 - u8 a = static_cast<u8>(REVERSE_BYTE(texelWeightData[i])); - u8 b = static_cast<u8>(REVERSE_BYTE(texelWeightData[15 - i])); -#undef REVERSE_BYTE - - texelWeightData[i] = b; - texelWeightData[15 - i] = a; - } - - // Make sure that higher non-texel bits are set to zero - const u32 clearByteStart = (weightParams.GetPackedBitSize() >> 3) + 1; - if (clearByteStart > 0 && clearByteStart <= texelWeightData.size()) { - texelWeightData[clearByteStart - 1] &= - static_cast<u8>((1 << (weightParams.GetPackedBitSize() % 8)) - 1); - std::memset(texelWeightData.data() + clearByteStart, 0, - std::min(16U - clearByteStart, 16U)); - } - - IntegerEncodedVector texelWeightValues; - - InputBitStream weightStream(texelWeightData); - - DecodeIntegerSequence(texelWeightValues, weightStream, weightParams.m_MaxWeight, - weightParams.GetNumWeightValues()); - - // Blocks can be at most 12x12, so we can have as many as 144 weights - u32 weights[2][144]; - UnquantizeTexelWeights(weights, texelWeightValues, weightParams, blockWidth, blockHeight); - - // Now that we have endpos32s and weights, we can s32erpolate and generate - // the proper decoding... - for (u32 j = 0; j < blockHeight; j++) - for (u32 i = 0; i < blockWidth; i++) { - u32 partition = Select2DPartition(partitionIndex, i, j, nPartitions, - (blockHeight * blockWidth) < 32); - assert(partition < nPartitions); - - Pixel p; - for (u32 c = 0; c < 4; c++) { - u32 C0 = endpos32s[partition][0].Component(c); - C0 = ReplicateByteTo16(C0); - u32 C1 = endpos32s[partition][1].Component(c); - C1 = ReplicateByteTo16(C1); - - u32 plane = 0; - if (weightParams.m_bDualPlane && (((planeIdx + 1) & 3) == c)) { - plane = 1; - } - - u32 weight = weights[plane][j * blockWidth + i]; - u32 C = (C0 * (64 - weight) + C1 * weight + 32) / 64; - if (C == 65535) { - p.Component(c) = 255; - } else { - double Cf = static_cast<double>(C); - p.Component(c) = static_cast<u16>(255.0 * (Cf / 65536.0) + 0.5); - } - } - - outBuf[j * blockWidth + i] = p.Pack(); - } -} - -} // namespace ASTCC - -namespace Tegra::Texture::ASTC { - -void Decompress(std::span<const uint8_t> data, uint32_t width, uint32_t height, uint32_t depth, - uint32_t block_width, uint32_t block_height, std::span<uint8_t> output) { - u32 block_index = 0; - std::size_t depth_offset = 0; - for (u32 z = 0; z < depth; z++) { - for (u32 y = 0; y < height; y += block_height) { - for (u32 x = 0; x < width; x += block_width) { - const std::span<const u8, 16> blockPtr{data.subspan(block_index * 16, 16)}; - - // Blocks can be at most 12x12 - std::array<u32, 12 * 12> uncompData; - ASTCC::DecompressBlock(blockPtr, block_width, block_height, uncompData); - - u32 decompWidth = std::min(block_width, width - x); - u32 decompHeight = std::min(block_height, height - y); - - const std::span<u8> outRow = output.subspan(depth_offset + (y * width + x) * 4); - for (u32 jj = 0; jj < decompHeight; jj++) { - std::memcpy(outRow.data() + jj * width * 4, - uncompData.data() + jj * block_width, decompWidth * 4); - } - ++block_index; - } - } - depth_offset += height * width * 4; - } -} - -} // namespace Tegra::Texture::ASTC diff --git a/src/video_core/textures/astc.h b/src/video_core/textures/astc.h index 9105119bc..c1c73fda5 100644 --- a/src/video_core/textures/astc.h +++ b/src/video_core/textures/astc.h @@ -4,11 +4,129 @@ #pragma once -#include <cstdint> +#include <bit> +#include "common/common_types.h" namespace Tegra::Texture::ASTC { -void Decompress(std::span<const uint8_t> data, uint32_t width, uint32_t height, uint32_t depth, - uint32_t block_width, uint32_t block_height, std::span<uint8_t> output); +enum class IntegerEncoding { JustBits, Quint, Trit }; + +struct IntegerEncodedValue { + constexpr IntegerEncodedValue() = default; + + constexpr IntegerEncodedValue(IntegerEncoding encoding_, u32 num_bits_) + : encoding{encoding_}, num_bits{num_bits_} {} + + constexpr bool MatchesEncoding(const IntegerEncodedValue& other) const { + return encoding == other.encoding && num_bits == other.num_bits; + } + + // Returns the number of bits required to encode num_vals values. + u32 GetBitLength(u32 num_vals) const { + u32 total_bits = num_bits * num_vals; + if (encoding == IntegerEncoding::Trit) { + total_bits += (num_vals * 8 + 4) / 5; + } else if (encoding == IntegerEncoding::Quint) { + total_bits += (num_vals * 7 + 2) / 3; + } + return total_bits; + } + + IntegerEncoding encoding{}; + u32 num_bits = 0; + u32 bit_value = 0; + union { + u32 quint_value = 0; + u32 trit_value; + }; +}; + +// Returns a new instance of this struct that corresponds to the +// can take no more than mav_value values +constexpr IntegerEncodedValue CreateEncoding(u32 mav_value) { + while (mav_value > 0) { + u32 check = mav_value + 1; + + // Is mav_value a power of two? + if (!(check & (check - 1))) { + return IntegerEncodedValue(IntegerEncoding::JustBits, std::popcount(mav_value)); + } + + // Is mav_value of the type 3*2^n - 1? + if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1))) { + return IntegerEncodedValue(IntegerEncoding::Trit, std::popcount(check / 3 - 1)); + } + + // Is mav_value of the type 5*2^n - 1? + if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1))) { + return IntegerEncodedValue(IntegerEncoding::Quint, std::popcount(check / 5 - 1)); + } + + // Apparently it can't be represented with a bounded integer sequence... + // just iterate. + mav_value--; + } + return IntegerEncodedValue(IntegerEncoding::JustBits, 0); +} + +constexpr std::array<IntegerEncodedValue, 256> MakeEncodedValues() { + std::array<IntegerEncodedValue, 256> encodings{}; + for (std::size_t i = 0; i < encodings.size(); ++i) { + encodings[i] = CreateEncoding(static_cast<u32>(i)); + } + return encodings; +} + +constexpr std::array<IntegerEncodedValue, 256> EncodingsValues = MakeEncodedValues(); + +// Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)] +// is the same as [(num_bits - 1):0] and repeats all the way down. +template <typename IntType> +constexpr IntType Replicate(IntType val, u32 num_bits, u32 to_bit) { + if (num_bits == 0 || to_bit == 0) { + return 0; + } + const IntType v = val & static_cast<IntType>((1 << num_bits) - 1); + IntType res = v; + u32 reslen = num_bits; + while (reslen < to_bit) { + u32 comp = 0; + if (num_bits > to_bit - reslen) { + u32 newshift = to_bit - reslen; + comp = num_bits - newshift; + num_bits = newshift; + } + res = static_cast<IntType>(res << num_bits); + res = static_cast<IntType>(res | (v >> comp)); + reslen += num_bits; + } + return res; +} + +constexpr std::size_t NumReplicateEntries(u32 num_bits) { + return std::size_t(1) << num_bits; +} + +template <typename IntType, u32 num_bits, u32 to_bit> +constexpr auto MakeReplicateTable() { + std::array<IntType, NumReplicateEntries(num_bits)> table{}; + for (IntType value = 0; value < static_cast<IntType>(std::size(table)); ++value) { + table[value] = Replicate(value, num_bits, to_bit); + } + return table; +} + +constexpr auto REPLICATE_BYTE_TO_16_TABLE = MakeReplicateTable<u32, 8, 16>(); +constexpr auto REPLICATE_6_BIT_TO_8_TABLE = MakeReplicateTable<u32, 6, 8>(); +constexpr auto REPLICATE_7_BIT_TO_8_TABLE = MakeReplicateTable<u32, 7, 8>(); +constexpr auto REPLICATE_8_BIT_TO_8_TABLE = MakeReplicateTable<u32, 8, 8>(); + +struct AstcBufferData { + decltype(EncodingsValues) encoding_values = EncodingsValues; + decltype(REPLICATE_6_BIT_TO_8_TABLE) replicate_6_to_8 = REPLICATE_6_BIT_TO_8_TABLE; + decltype(REPLICATE_7_BIT_TO_8_TABLE) replicate_7_to_8 = REPLICATE_7_BIT_TO_8_TABLE; + decltype(REPLICATE_8_BIT_TO_8_TABLE) replicate_8_to_8 = REPLICATE_8_BIT_TO_8_TABLE; + decltype(REPLICATE_BYTE_TO_16_TABLE) replicate_byte_to_16 = REPLICATE_BYTE_TO_16_TABLE; +} constexpr ASTC_BUFFER_DATA; } // namespace Tegra::Texture::ASTC diff --git a/src/video_core/textures/decoders.cpp b/src/video_core/textures/decoders.cpp index 62685a183..3a463d5db 100644 --- a/src/video_core/textures/decoders.cpp +++ b/src/video_core/textures/decoders.cpp @@ -17,26 +17,7 @@ #include "video_core/textures/texture.h" namespace Tegra::Texture { - namespace { -/** - * This table represents the internal swizzle of a gob, in format 16 bytes x 2 sector packing. - * Calculates the offset of an (x, y) position within a swizzled texture. - * Taken from the Tegra X1 Technical Reference Manual. pages 1187-1188 - */ -constexpr SwizzleTable MakeSwizzleTableConst() { - SwizzleTable table{}; - for (u32 y = 0; y < table.size(); ++y) { - for (u32 x = 0; x < table[0].size(); ++x) { - table[y][x] = ((x % 64) / 32) * 256 + ((y % 8) / 2) * 64 + ((x % 32) / 16) * 32 + - (y % 2) * 16 + (x % 16); - } - } - return table; -} - -constexpr SwizzleTable SWIZZLE_TABLE = MakeSwizzleTableConst(); - template <bool TO_LINEAR> void Swizzle(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel, u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth, u32 stride_alignment) { @@ -91,10 +72,6 @@ void Swizzle(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixe } } // Anonymous namespace -SwizzleTable MakeSwizzleTable() { - return SWIZZLE_TABLE; -} - void UnswizzleTexture(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel, u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth, u32 stride_alignment) { diff --git a/src/video_core/textures/decoders.h b/src/video_core/textures/decoders.h index d7cdc81e8..4c14cefbf 100644 --- a/src/video_core/textures/decoders.h +++ b/src/video_core/textures/decoders.h @@ -23,8 +23,22 @@ constexpr u32 GOB_SIZE_SHIFT = GOB_SIZE_X_SHIFT + GOB_SIZE_Y_SHIFT + GOB_SIZE_Z_ using SwizzleTable = std::array<std::array<u32, GOB_SIZE_X>, GOB_SIZE_Y>; -/// Returns a z-order swizzle table -SwizzleTable MakeSwizzleTable(); +/** + * This table represents the internal swizzle of a gob, in format 16 bytes x 2 sector packing. + * Calculates the offset of an (x, y) position within a swizzled texture. + * Taken from the Tegra X1 Technical Reference Manual. pages 1187-1188 + */ +constexpr SwizzleTable MakeSwizzleTable() { + SwizzleTable table{}; + for (u32 y = 0; y < table.size(); ++y) { + for (u32 x = 0; x < table[0].size(); ++x) { + table[y][x] = ((x % 64) / 32) * 256 + ((y % 8) / 2) * 64 + ((x % 32) / 16) * 32 + + (y % 2) * 16 + (x % 16); + } + } + return table; +} +constexpr SwizzleTable SWIZZLE_TABLE = MakeSwizzleTable(); /// Unswizzles a block linear texture into linear memory. void UnswizzleTexture(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel, |