summaryrefslogtreecommitdiffstats
path: root/src/shader_recompiler/backend/glsl/emit_glsl.cpp
blob: b189f6c1161878b2c9006fe5c2708a5c094355cc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <ranges>
#include <string>

#include "shader_recompiler/backend/glsl/emit_context.h"
#include "shader_recompiler/backend/glsl/emit_glsl.h"
#include "shader_recompiler/backend/glsl/emit_glsl_instructions.h"
#include "shader_recompiler/frontend/ir/ir_emitter.h"

namespace Shader::Backend::GLSL {
namespace {
template <class Func>
struct FuncTraits {};

template <class ReturnType_, class... Args>
struct FuncTraits<ReturnType_ (*)(Args...)> {
    using ReturnType = ReturnType_;

    static constexpr size_t NUM_ARGS = sizeof...(Args);

    template <size_t I>
    using ArgType = std::tuple_element_t<I, std::tuple<Args...>>;
};

template <auto func, typename... Args>
void SetDefinition(EmitContext& ctx, IR::Inst* inst, Args... args) {
    inst->SetDefinition<Id>(func(ctx, std::forward<Args>(args)...));
}

template <typename ArgType>
auto Arg(EmitContext& ctx, const IR::Value& arg) {
    if constexpr (std::is_same_v<ArgType, std::string_view>) {
        return ctx.var_alloc.Consume(arg);
    } else if constexpr (std::is_same_v<ArgType, const IR::Value&>) {
        return arg;
    } else if constexpr (std::is_same_v<ArgType, u32>) {
        return arg.U32();
    } else if constexpr (std::is_same_v<ArgType, IR::Attribute>) {
        return arg.Attribute();
    } else if constexpr (std::is_same_v<ArgType, IR::Patch>) {
        return arg.Patch();
    } else if constexpr (std::is_same_v<ArgType, IR::Reg>) {
        return arg.Reg();
    }
}

template <auto func, bool is_first_arg_inst, size_t... I>
void Invoke(EmitContext& ctx, IR::Inst* inst, std::index_sequence<I...>) {
    using Traits = FuncTraits<decltype(func)>;
    if constexpr (std::is_same_v<typename Traits::ReturnType, Id>) {
        if constexpr (is_first_arg_inst) {
            SetDefinition<func>(
                ctx, inst, *inst,
                Arg<typename Traits::template ArgType<I + 2>>(ctx, inst->Arg(I))...);
        } else {
            SetDefinition<func>(
                ctx, inst, Arg<typename Traits::template ArgType<I + 1>>(ctx, inst->Arg(I))...);
        }
    } else {
        if constexpr (is_first_arg_inst) {
            func(ctx, *inst, Arg<typename Traits::template ArgType<I + 2>>(ctx, inst->Arg(I))...);
        } else {
            func(ctx, Arg<typename Traits::template ArgType<I + 1>>(ctx, inst->Arg(I))...);
        }
    }
}

template <auto func>
void Invoke(EmitContext& ctx, IR::Inst* inst) {
    using Traits = FuncTraits<decltype(func)>;
    static_assert(Traits::NUM_ARGS >= 1, "Insufficient arguments");
    if constexpr (Traits::NUM_ARGS == 1) {
        Invoke<func, false>(ctx, inst, std::make_index_sequence<0>{});
    } else {
        using FirstArgType = typename Traits::template ArgType<1>;
        static constexpr bool is_first_arg_inst = std::is_same_v<FirstArgType, IR::Inst&>;
        using Indices = std::make_index_sequence<Traits::NUM_ARGS - (is_first_arg_inst ? 2 : 1)>;
        Invoke<func, is_first_arg_inst>(ctx, inst, Indices{});
    }
}

void EmitInst(EmitContext& ctx, IR::Inst* inst) {
    switch (inst->GetOpcode()) {
#define OPCODE(name, result_type, ...)                                                             \
    case IR::Opcode::name:                                                                         \
        return Invoke<&Emit##name>(ctx, inst);
#include "shader_recompiler/frontend/ir/opcodes.inc"
#undef OPCODE
    }
    throw LogicError("Invalid opcode {}", inst->GetOpcode());
}

bool IsReference(IR::Inst& inst) {
    return inst.GetOpcode() == IR::Opcode::Reference;
}

void PrecolorInst(IR::Inst& phi) {
    // Insert phi moves before references to avoid overwritting other phis
    const size_t num_args{phi.NumArgs()};
    for (size_t i = 0; i < num_args; ++i) {
        IR::Block& phi_block{*phi.PhiBlock(i)};
        auto it{std::find_if_not(phi_block.rbegin(), phi_block.rend(), IsReference).base()};
        IR::IREmitter ir{phi_block, it};
        const IR::Value arg{phi.Arg(i)};
        if (arg.IsImmediate()) {
            ir.PhiMove(phi, arg);
        } else {
            ir.PhiMove(phi, IR::Value{arg.InstRecursive()});
        }
    }
    for (size_t i = 0; i < num_args; ++i) {
        IR::IREmitter{*phi.PhiBlock(i)}.Reference(IR::Value{&phi});
    }
}

void Precolor(const IR::Program& program) {
    for (IR::Block* const block : program.blocks) {
        for (IR::Inst& phi : block->Instructions() | std::views::take_while(IR::IsPhi)) {
            PrecolorInst(phi);
        }
    }
}

void EmitCode(EmitContext& ctx, const IR::Program& program) {
    for (const IR::AbstractSyntaxNode& node : program.syntax_list) {
        switch (node.type) {
        case IR::AbstractSyntaxNode::Type::Block:
            for (IR::Inst& inst : node.data.block->Instructions()) {
                EmitInst(ctx, &inst);
            }
            break;
        case IR::AbstractSyntaxNode::Type::If:
            ctx.Add("if({}){{", ctx.var_alloc.Consume(node.data.if_node.cond));
            break;
        case IR::AbstractSyntaxNode::Type::EndIf:
            ctx.Add("}}");
            break;
        case IR::AbstractSyntaxNode::Type::Break:
            if (node.data.break_node.cond.IsImmediate()) {
                if (node.data.break_node.cond.U1()) {
                    ctx.Add("break;");
                }
            } else {
                ctx.Add("if({}){{break;}}", ctx.var_alloc.Consume(node.data.break_node.cond));
            }
            break;
        case IR::AbstractSyntaxNode::Type::Return:
        case IR::AbstractSyntaxNode::Type::Unreachable:
            ctx.Add("return;");
            break;
        case IR::AbstractSyntaxNode::Type::Loop:
            ctx.Add("for(;;){{");
            break;
        case IR::AbstractSyntaxNode::Type::Repeat:
            ctx.Add("if({}){{continue;}}else{{break;}}}}",
                    ctx.var_alloc.Consume(node.data.repeat.cond));
            break;
        default:
            throw NotImplementedException("AbstractSyntaxNode::Type {}", node.type);
            break;
        }
    }
}

std::string GlslVersionSpecifier(const EmitContext& ctx) {
    if (ctx.uses_y_direction) {
        return " compatibility";
    }
    return "";
}

bool IsPreciseType(GlslVarType type) {
    switch (type) {
    case GlslVarType::PrecF32:
    case GlslVarType::PrecF64:
        return true;
    default:
        return false;
    }
}

void DefineVariables(const EmitContext& ctx, std::string& header) {
    for (u32 i = 0; i < static_cast<u32>(GlslVarType::Void); ++i) {
        const auto type{static_cast<GlslVarType>(i)};
        const auto& tracker{ctx.var_alloc.GetUseTracker(type)};
        const auto type_name{ctx.var_alloc.GetGlslType(type)};
        const auto precise{IsPreciseType(type) ? "precise " : ""};
        // Temps/return types that are never used are stored at index 0
        if (tracker.uses_temp) {
            header += fmt::format("{}{} t{}={}(0);", precise, type_name,
                                  ctx.var_alloc.Representation(0, type), type_name);
        }
        for (u32 index = 0; index < tracker.num_used; ++index) {
            header += fmt::format("{}{} {}={}(0);", precise, type_name,
                                  ctx.var_alloc.Representation(index, type), type_name);
        }
    }
}
} // Anonymous namespace

std::string EmitGLSL(const Profile& profile, const RuntimeInfo& runtime_info, IR::Program& program,
                     Bindings& bindings) {
    EmitContext ctx{program, bindings, profile, runtime_info};
    Precolor(program);
    EmitCode(ctx, program);
    const std::string version{fmt::format("#version 450{}\n", GlslVersionSpecifier(ctx))};
    ctx.header.insert(0, version);
    if (program.local_memory_size > 0) {
        ctx.header += fmt::format("uint lmem[{}];", program.local_memory_size / 4);
    }
    if (program.shared_memory_size > 0) {
        ctx.header += fmt::format("shared uint smem[{}];", program.shared_memory_size / 4);
    }
    ctx.header += "\nvoid main(){\n";
    if (program.stage == Stage::VertexA || program.stage == Stage::VertexB) {
        ctx.header += "gl_Position = vec4(0.0f, 0.0f, 0.0f, 1.0f);";
        // TODO: Properly resolve attribute issues
        for (size_t index = 0; index < program.info.stores_generics.size() / 2; ++index) {
            if (!program.info.stores_generics[index]) {
                ctx.header += fmt::format("out_attr{}=vec4(0,0,0,1);", index);
            }
        }
    }
    DefineVariables(ctx, ctx.header);
    if (ctx.uses_cc_carry) {
        ctx.header += "uint carry;";
    }
    if (program.info.uses_subgroup_shuffles) {
        ctx.header += "bool shfl_in_bounds;";
    }
    ctx.code.insert(0, ctx.header);
    ctx.code += '}';
    return ctx.code;
}

} // namespace Shader::Backend::GLSL