diff options
Diffstat (limited to 'šola/la')
-rw-r--r-- | šola/la/kolokvij1.lyx | 805 |
1 files changed, 805 insertions, 0 deletions
diff --git a/šola/la/kolokvij1.lyx b/šola/la/kolokvij1.lyx new file mode 100644 index 0000000..429701d --- /dev/null +++ b/šola/la/kolokvij1.lyx @@ -0,0 +1,805 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass article +\begin_preamble +\usepackage{siunitx} +\usepackage{pgfplots} +\usepackage{listings} +\usepackage{multicol} +\sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}} +\end_preamble +\use_default_options true +\begin_modules +enumitem +\end_modules +\maintain_unincluded_children false +\language slovene +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification false +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 1cm +\topmargin 0cm +\rightmargin 1cm +\bottommargin 2cm +\headheight 1cm +\headsep 1cm +\footskip 1cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style german +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +List s formulami za 1. + kolokvij Linearne algebre +\end_layout + +\begin_layout Author + +\noun on +Anton Luka Šijanec +\end_layout + +\begin_layout Date +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +today +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +newcommand +\backslash +euler{e} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{multicols}{2} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\vec{u}\cdot\vec{u}=\vert\vert\vec{u}\vert\vert^{2}$ +\end_inset + +, +\begin_inset Formula $\left(\alpha\vec{u}+\beta\vec{v}\right)\cdot\vec{w}=\alpha\left(\vec{u}\cdot\vec{w}\right)+\beta\left(\vec{v},\vec{w}\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +Paralelogramska ident.: +\begin_inset Formula $\vert\vert\vec{u}+\vec{v}\vert\vert^{2}+\vert\vert\vec{u}-\vec{v}\vert\vert^{2}=2\vert\vert\vec{u}\vert\vert^{2}+2\vert\vert\vec{v}\vert\vert^{2}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Ploščina paralelograma: +\begin_inset Formula $\vert\vert\vec{u}\times\vec{v}\vert\vert=\vert\vert\vec{u}\vert\vert\vert\vert\vec{v}\vert\vert\sin\phi$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $<\vec{u},\vec{v}>=\vert\vert\vec{u}\vert\vert\vert\vert\vec{v}\vert\vert\cos\phi$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $<\vec{u}\times\vec{v},\vec{u}>=0$ +\end_inset + +, +\begin_inset Formula $\vert\vert\vec{u}\times\vec{v}\vert\vert^{2}+<\vec{u},\vec{v}>^{2}=\vert\vert\vec{u}\vert\vert^{2}\vert\vert\vec{v}\vert\vert^{2}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Vol. + ppd.: +\begin_inset Formula $[u,v,w]=<u\times v,w>=\vert\vert u\times v\vert\vert\cdot\vert\vert w\vert\vert\cos\phi$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\vec{u}\times\vec{u}=0$ +\end_inset + +, +\begin_inset Formula $\vec{u}\times\vec{v}=-\left(\vec{v}\times\vec{u}\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +Linearnost +\begin_inset Formula $\times$ +\end_inset + +: +\begin_inset Formula $\left(\alpha\vec{u}+\beta\vec{v}\right)\times\vec{w}=\alpha\left(\vec{u}\times\vec{w}\right)+\beta\left(\vec{v}\times\vec{w}\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $[u,v,w]=-[u,w,v]$ +\end_inset + +, +\begin_inset Formula $[u,v,w]=[w,u,v]=[v,w,u]$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\vec{r}=\vec{r_{0}}+t\vec{p},t\in\mathbb{R}\Longleftrightarrow x=x_{0}+tp_{1},y=y_{0}+tp_{2},z=z_{0}+tp_{3}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\Longleftrightarrow t=\frac{x-x_{0}}{p_{1}}=\frac{y-y_{0}}{p_{2}}=\frac{z-z_{0}}{p_{3}}$ +\end_inset + + :Normalna enačba +\begin_inset Formula $\mathbb{R}^{3}$ +\end_inset + + premice +\end_layout + +\begin_layout Standard +Projekcija +\begin_inset Formula $\vec{r_{1}}$ +\end_inset + + na +\begin_inset Formula $\vec{r_{0}}+t\vec{p}$ +\end_inset + + +\begin_inset Formula $\coloneqq$ +\end_inset + + +\begin_inset Formula $\vec{r_{1}'}=\vec{r_{0}}+t'\vec{p}$ +\end_inset + + in +\begin_inset Formula $<\vec{r_{1}'}-\vec{r_{1}},\vec{p}>=0$ +\end_inset + + +\end_layout + +\begin_layout Standard +Dvojni +\begin_inset Formula $\times$ +\end_inset + +: +\begin_inset Formula $\vec{a}\times\left(\vec{b}\times\vec{c}\right)=\vec{b}\left(\vec{a}\cdot\vec{c}\right)-\vec{c}\left(\vec{a}\cdot\vec{b}\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +Dvojni +\begin_inset Formula $\times$ +\end_inset + +: +\begin_inset Formula $\left(\vec{a}\times\vec{b}\right)\times\vec{c}=\vec{b}\left(\vec{a}\cdot\vec{c}\right)-\vec{a}\left(\vec{b}\cdot\vec{c}\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +Norm. + e. + ravnine: +\begin_inset Formula $n_{1}x+n_{2}y+n_{3}z=d=n_{1}x_{0}+n_{2}y_{0}+n_{3}z_{0}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\Longleftrightarrow<\vec{r}-\vec{r_{0}},\vec{n}>=0$ +\end_inset + +, saj je +\begin_inset Formula $\forall\vec{r}\in$ +\end_inset + +ravnine +\begin_inset Formula $:\left(\vec{r}-\vec{r_{0}}\right)\bot\vec{n}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Parametrična e. + ravnine: +\begin_inset Formula $\vec{r}=\vec{r_{0}}+s\vec{p}+t\vec{q},s\in\mathbb{R},q\in\mathbb{R}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Proj. + +\begin_inset Formula $\vec{r_{1}}=\vec{r_{0}}+s\vec{p}+t\vec{q}$ +\end_inset + + velja +\begin_inset Formula $<\vec{r_{1}'}-\vec{r_{1},\vec{p}}>=0=<\vec{r_{1}'}-\vec{r_{1},\vec{q}}>$ +\end_inset + + +\end_layout + +\begin_layout Standard +sistem: +\begin_inset Formula $s\vec{p}\cdot\vec{p}+t\vec{q}\cdot\vec{p}=\left(\vec{r_{1}}-\vec{r_{0}}\right)\cdot\vec{p}$ +\end_inset + +; +\begin_inset Formula $s\vec{p}\cdot\vec{q}+t\vec{q}\cdot\vec{q}=\left(\vec{r_{1}}-\vec{r_{0}}\right)\cdot\vec{q}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Hiperravnino v +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + določa +\begin_inset Formula $n$ +\end_inset + + linearno neodvisnih vektorjev. +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Posplošena rešitev: +\begin_inset Formula $\min\sum_{k=1}^{m}\left(a_{k,1}x_{1}+\ldots+a_{1,n}x_{n}-b_{k}\right)^{2}$ +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Formula $\Longleftrightarrow\min\vert\vert x_{1}\vec{a_{1}}+\ldots+x_{n}\vec{a_{n}}-\vec{b}\vert\vert^{2}$ +\end_inset + + (proj +\begin_inset Formula $\vec{b}$ +\end_inset + + na hiperravnino) +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(AB\right)^{T}=B^{T}+A^{T}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $E_{ij}\left(\alpha\right)\coloneqq\texttt{i+=\ensuremath{\alpha}j}$ +\end_inset + +, +\begin_inset Formula $P_{ij}\coloneqq\texttt{i,j=j,i}$ +\end_inset + +, +\begin_inset Formula $E_{i}\left(\alpha\right)\coloneqq\texttt{i*=\ensuremath{\alpha}}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $E_{ij}\left(\alpha\right)^{-1}=E_{ij}\left(\alpha\right)$ +\end_inset + +, +\begin_inset Formula $P_{ij}^{-1}=P_{ji}$ +\end_inset + +, +\begin_inset Formula $E_{i}\left(\beta\right)^{-1}=E_{i}\left(\beta^{-1}\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\nexists A_{m,n}^{-1}\Leftrightarrow A=0\Leftrightarrow m\not=n\Leftrightarrow\det A=0\Leftrightarrow A$ +\end_inset + + ima +\begin_inset Formula $\vec{0}$ +\end_inset + + vrstico/stolpec +\end_layout + +\begin_layout Paragraph +Karakterizacija obrnljivih matrik +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{multicols}{2} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument 1 +status open + +\begin_layout Plain Layout +label= +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\exists A^{-1}$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\exists B\ni:BA=I$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\exists B\ni:AB=I$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\left(AX=0\Longrightarrow X=0\right)$ +\end_inset + + +\end_layout + +\begin_layout Itemize +stolpci so ogrodje +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\text{RKSO}\left(A\right)=I$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\forall\vec{b}\exists\vec{x}\ni:A\vec{x}=\vec{b}$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $A=$ +\end_inset + + produkt E. + M. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{multicols} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +\begin_inset Formula $\exists A^{-1}\Longleftrightarrow\exists B\ni:BA=I\Longleftrightarrow\exists B\ni:AB=I\Longleftrightarrow$ +\end_inset + + stolpci so LN +\begin_inset Formula $\Longleftrightarrow\left(AX=0\Longrightarrow X=0\right)\Longleftrightarrow$ +\end_inset + +stolpci so ogrodje +\begin_inset Formula $\Longleftrightarrow\text{RKSO}\left(A\right)=$ +\end_inset + + +\begin_inset Formula $I\Longleftrightarrow\forall\vec{b}\exists\vec{x}\ni:A\vec{x}=\vec{b}\Longleftrightarrow A=$ +\end_inset + +produkt E.M. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Matrični zapis sistema: +\begin_inset Formula $A\vec{x}=\vec{b}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Najkrajša rešitev sistema +\begin_inset Formula $\vec{x_{0}}\Leftarrow\vert\vert A\vec{x_{0}}-\vec{b}\vert\vert=\min\vert\vert A\vec{x}-\vec{b}\vert\vert$ +\end_inset + + +\end_layout + +\begin_layout Standard +... + je običajna rešitev +\begin_inset Formula $A^{T}A\vec{x}=A^{T}\vec{b}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Desno množenje z E. + M. + je manipulacija stoplcev. +\end_layout + +\begin_layout Standard +\begin_inset Formula $M/A\coloneqq D-CA^{-1}B$ +\end_inset + +, +\begin_inset Formula $M/D\coloneqq A-BD^{-1}C$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +M^{-1}=\left[\begin{array}{cc} +A & B\\ +C & D +\end{array}\right]^{-1}= +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +=\left[\begin{array}{cc} +A^{-1}+A^{-1}B\left(M/A\right)^{-1}CA^{-1} & -A^{-1}B\left(M/A\right)^{-1}\\ +-\left(M/A\right)^{-1}CA^{-1} & \left(M/A\right)^{-1} +\end{array}\right]= +\] + +\end_inset + + +\begin_inset Formula +\[ +=\left[\begin{array}{cc} +\left(M/D\right)^{-1} & -\left(M/D\right)^{-1}BD^{-1}\\ +-D^{-1}C\left(M/D\right)^{-1} & D^{-1}+D^{-1}C\left(M/D\right)^{-1}BD^{-1} +\end{array}\right] +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\det\left[\begin{array}{cc} +a & b\\ +c & d +\end{array}\right]=ad-bc$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\vec{a}\times\vec{b}=\left|\begin{array}{ccc} +\vec{i} & \vec{j} & \vec{k}\\ +a_{1} & a_{2} & a_{3}\\ +b_{1} & b_{2} & b_{3} +\end{array}\right|$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $A_{i,j}\coloneqq A$ +\end_inset + + brez +\begin_inset Formula $i$ +\end_inset + +te vrstice in +\begin_inset Formula $j$ +\end_inset + +tega stolpca +\end_layout + +\begin_layout Standard +\begin_inset Formula $\det[a]=a$ +\end_inset + +, +\begin_inset Formula $\det A=\sum_{k=1}^{n}\left(-1\right)^{k+1}a_{1,k}\det A_{1,j}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Razvoj po +\begin_inset Formula $i$ +\end_inset + +ti vrstici: +\begin_inset Formula $\det A=\sum_{j=1}^{n}\left(-1\right)^{i+j}a_{ij}\det A_{ij}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Razvoj po +\begin_inset Formula $j$ +\end_inset + +tem stolpcu: +\begin_inset Formula $\det A=\sum_{i=1}^{n}\left(-1\right)^{i+j}a_{ij}\det A_{ij}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\det$ +\end_inset + + trikotne matrike: +\begin_inset Formula $\prod_{i=1}^{n}a_{ii}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Trikotna matrika ima pod ali nad diagonalo same ničle. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\det\left(P_{ij}A\right)=-detA$ +\end_inset + +, +\begin_inset Formula $\det\left(E_{i}\alpha A\right)=\alpha\det A$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\det\left(E_{ij}\alpha A\right)=\det A$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\det\left(AB\right)=\det A\det B$ +\end_inset + + +\end_layout + +\begin_layout Standard +Za možne napake ne odgovarjam. + Srečno! +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{multicols} +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document |