From 6c94d018ceb9f3fd3fc0e73c5702dd8d88e32c19 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Anton=20Luka=20=C5=A0ijanec?= Date: Sat, 10 Aug 2024 00:00:13 +0200 Subject: =?UTF-8?q?grem=20spat,=20kon=C4=8Dal=208.=20predavanje.=20LP=20za?= =?UTF-8?q?=C4=8Del=209.=20ana1u=C4=8D!?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- "\305\241ola/ana1/teor.lyx" | 1567 ++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 1481 insertions(+), 86 deletions(-) diff --git "a/\305\241ola/ana1/teor.lyx" "b/\305\241ola/ana1/teor.lyx" index 28f0397..2b6057d 100644 --- "a/\305\241ola/ana1/teor.lyx" +++ "b/\305\241ola/ana1/teor.lyx" @@ -2849,7 +2849,20 @@ Lahko se zgodi, \end_layout \begin_layout Theorem* -Naj bo +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hypertarget{kmoz}{Konvergenca monotonega in omejenega zaporedja} +\end_layout + +\end_inset + +. + Naj bo \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset @@ -3862,7 +3875,20 @@ s čimer dobimo zgornjo mejo \end_inset , - je torej zaporedje omejeno in ker je tudi monotono po prejšnjem izreku konvergira. + je torej zaporedje omejeno in ker je tudi monotono po +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hyperlink{kmoz}{prejšnjem izreku} +\end_layout + +\end_inset + + konvergira. \end_layout \end_deeper @@ -7157,7 +7183,7 @@ TODO XXX FIXME PREVERI ŠE V profesrojevih PDFJIH, Ideja: Izdelati želimo formulacijo, s katero preverimo, - le lahko z dovolj majhno spremembo + če lahko z dovolj majhno spremembo \begin_inset Formula $x$ \end_inset @@ -7455,7 +7481,20 @@ okolice \end_deeper \begin_layout Theorem* -Naj bo +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hypertarget{kzsppom}{Karakterizacija zveznosti s pomočjo praslik odprtih množic} +\end_layout + +\end_inset + +. + Naj bo \begin_inset Formula $f:D\to\mathbb{R}$ \end_inset @@ -8111,165 +8150,236 @@ Naj bo \end_layout \begin_layout Example* -Naj bo -\begin_inset Formula $f:\mathbb{R}\setminus\left\{ 0\right\} \to\mathbb{R}$ +Kvadratna funkcija +\begin_inset Formula $f\left(x\right)=x^{2}$ \end_inset - s predpisom -\begin_inset Formula $x\mapsto\frac{\sin x}{x}$ + je zvezna. + Vzemimo poljuben +\begin_inset Formula $a\in\mathbb{R},\varepsilon>0$ \end_inset . - Zanima nas, - ali obstaja -\begin_inset Formula $\lim_{x\to0}f\left(x\right)$ + Obstajati mora taka +\begin_inset Formula $\delta>0\ni:\forall x\in\mathbb{R}:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(a\right)\right|<\varepsilon$ \end_inset . - Grafični dokaz. \end_layout \begin_layout Example* -\begin_inset Float figure -placement document -alignment document -wide false -sideways false -status open +Podan imamo torej +\begin_inset Formula $a$ +\end_inset -\begin_layout Plain Layout -TODO XXX FIXME SKICA S TKZ EUCLID, - glej ZVZ III/ANA1P1120/str.8 -\end_layout + in +\begin_inset Formula $\varepsilon$ +\end_inset -\begin_layout Plain Layout -\begin_inset Caption Standard +, + želimo najti +\begin_inset Formula $\delta$ +\end_inset -\begin_layout Plain Layout -Skica. -\end_layout +. + Želimo priti do neenakosti, + ki ima na manjši strani +\begin_inset Formula $\left|f\left(x\right)-f\left(a\right)\right|=\left|x^{2}-a^{2}\right|$ +\end_inset + in na večji strani nek izraz z +\begin_inset Formula $\left|x-a\right|$ \end_inset +, + da ta +\begin_inset Formula $\left|x-a\right|$ +\end_inset -\end_layout + nadomestimo z +\begin_inset Formula $\delta$ +\end_inset + in nato večjo stran enačimo z +\begin_inset Formula $\varepsilon$ \end_inset -Očitno velja -\begin_inset Formula $\triangle ABD\subset$ +, + da izrazimo +\begin_inset Formula $\varepsilon$ \end_inset - krožni izsek -\begin_inset Formula $DAB\subset\triangle ABC$ + v odvisnosti od +\begin_inset Formula $\delta$ \end_inset -, - torej za njihove ploščine velja -\begin_inset Formula -\[ -\frac{\sin x}{2}\leq\frac{x}{2\pi}\cdot x=\frac{x}{2}\leq\frac{\tan x}{2}\quad\quad\quad\quad/\cdot\frac{2}{\sin x} -\] + in +\begin_inset Formula $a$ +\end_inset + +. +\end_layout +\begin_layout Example* +Računajmo: + +\begin_inset Formula $\left|x^{2}-a^{2}\right|=\left|x-a\right|\left|x+a\right|$ \end_inset +. + Predelajmo izraz +\begin_inset Formula $\left|x+a\right|=\left|\left(x-a\right)+2a\right|\leq\left|x-a\right|+\left|2a\right|$ +\end_inset -\begin_inset Formula -\[ -1\leq\frac{x}{\sin x}\leq\frac{1}{\cos x}\quad\quad\quad\quad/\lim_{x\to0} -\] +, + torej skupaj +\begin_inset Formula $\left|x^{2}-a^{2}\right|\leq\left|x-a\right|\left(\left|x-a\right|+\left|2a\right|\right)$ +\end_inset +. + Sedaj nadomestimo +\begin_inset Formula $\left|x-a\right|$ \end_inset + z +\begin_inset Formula $\delta$ +\end_inset -\begin_inset Formula -\[ -\lim_{x\to0}1\leq\lim_{x\to0}\frac{x}{\sin x}\leq\lim_{x\to0}\frac{1}{\cos x} -\] +: + +\begin_inset Formula $\left|x^{2}-a^{2}\right|\leq\delta\left(\delta+\left|2a\right|\right)$ +\end_inset + +. + Iščemo tak +\begin_inset Formula $\varepsilon$ +\end_inset + +, + da velja +\begin_inset Formula $\left|x^{2}-a^{2}\right|<\varepsilon$ +\end_inset +, + zato enačimo +\begin_inset Formula $\delta\left(\delta+\left|2a\right|\right)=\varepsilon$ \end_inset + in dobimo kvadratno enačbo +\begin_inset Formula $\delta^{2}+\left|2a\right|\delta-\varepsilon=0$ +\end_inset +, + ki jo rešimo z obrazcem za ničle: \begin_inset Formula \[ -1\leq\lim_{x\to0}\frac{x}{\sin x}\leq1 +\delta_{1,2}=\frac{-2\left|a\right|\pm\sqrt{4\left|a\right|^{2}-4\varepsilon}}{2}=-\left|a\right|\pm\sqrt{\left|a\right|^{2}-\varepsilon} \] \end_inset +Toda ker iščemo le pozitivne +\begin_inset Formula $\delta$ +\end_inset +, + je edina rešitev \begin_inset Formula \[ -\lim_{x\to0}\frac{x}{\sin x}=1 +\delta=-\left|a\right|+\sqrt{\left|a\right|^{2}-\varepsilon}=\sqrt{\left|a\right|^{2}-\varepsilon}-\left|a\right|=\frac{\sqrt{\left|a\right|^{2}-\varepsilon}-\left|a\right|}{1}=\frac{\left(\sqrt{\left|a\right|^{2}-\varepsilon}-\left|a\right|\right)\left(\sqrt{\left|a\right|^{2}-\varepsilon}+\left|a\right|\right)}{\sqrt{\left|a\right|^{2}-\varepsilon}+\left|a\right|}=\frac{\varepsilon}{\sqrt{\left|a\right|^{2}-\varepsilon}+\left|a\right|} \] \end_inset -Da naš sklep res potrdimo, - je potreben spodnji izrek. + \end_layout -\begin_layout Theorem* -Če za -\begin_inset Formula $f,g,h:D\to\mathbb{R}$ +\begin_layout Standard +\begin_inset Separator plain \end_inset - velja za -\begin_inset Formula $a\in D$ -\end_inset -: \end_layout -\begin_deeper -\begin_layout Itemize -\begin_inset Formula $\exists\varepsilon>0\forall x\in\left(a-\varepsilon,a+\varepsilon\right)\setminus\left\{ a\right\} :f\left(x\right)\leq g\left(x\right)\leq h\left(x\right)$ +\begin_layout Definition* +Naj bo +\begin_inset Formula $D\subset\mathbb{R},a\in\mathbb{R}\ni:\forall\varepsilon>0:D\cap\left(a,a+\varepsilon\right)\not=\emptyset$ \end_inset - in hkrati -\end_layout +. + Naj bo +\begin_inset Formula $f:D\to\mathbb{R}$ +\end_inset -\begin_layout Itemize -\begin_inset Formula $\exists\lim_{x\to a}f\left(x\right),\lim_{x\to a}h\left(x\right)$ +. + Število +\begin_inset Formula $L_{+}\in\mathbb{R}$ \end_inset - in -\begin_inset Formula $\lim_{x\to a}f\left(x\right)=\lim_{x\to a}h\left(x\right)=1$ + je desna limita funkcije +\begin_inset Formula $f$ +\end_inset + + v točki +\begin_inset Formula $a$ \end_inset , - tedaj tudi -\begin_inset Formula $\exists\lim_{x\to a}g\left(x\right)$ + če +\begin_inset Formula $\forall\left(a_{n}\right)_{n\in\mathbb{N}}\subset D\cap\left(a,\infty\right):a_{n}\to a\Rightarrow f\left(a_{n}\right)\to L_{+}$ \end_inset - in -\begin_inset Formula $\lim_{x\to a}g\left(x\right)=1$ + ZDB če za vsako k +\begin_inset Formula $a$ +\end_inset + + konvergentno zaporedje s členi desno od +\begin_inset Formula $a$ +\end_inset + + velja, + da funkcijske vrednosti členov konvergirajo k +\begin_inset Formula $L_{+}$ \end_inset . -\end_layout + Oznaka +\begin_inset Formula $L_{+}=\lim_{x\to a^{+}}f\left(x\right)=\lim_{x\searrow a}f\left(x\right)=f\left(a+0\right)$ +\end_inset -\end_deeper -\begin_layout Proof -TODO XXX FIXME DOKAZ V SKRIPTi +. + Podobno definiramo tudi levo limito +\begin_inset Formula $L_{-}=\lim_{x\to a^{-}}f\left(x\right)=\lim_{x\nearrow a}f\left(x\right)=f\left(a-0\right)$ +\end_inset + +. \end_layout -\begin_layout Example* -\begin_inset Formula $\lim_{x\to0}\frac{1}{1+e^{1/x}}$ +\begin_layout Theorem* +Naj bo +\begin_inset Formula $D\subset\mathbb{R}$ \end_inset - ne obstaja. - Zakaj? - Izračunajmo levo in desno limito: -\begin_inset Formula -\[ -\lim_{x\searrow0}\frac{1}{1+e^{1/x}}=0,\lim_{x\nearrow0}\frac{1}{1+e^{1/x}}=1 -\] + in +\begin_inset Formula $a\in\mathbb{R}$ +\end_inset + da velja +\begin_inset Formula $\forall\varepsilon>0:D\cap\left(a,a-\varepsilon\right)\not=\emptyset\wedge D\cap\left(a,a+\varepsilon\right)\not=\emptyset$ \end_inset -Toda +. + Naj bo +\begin_inset Formula $f:D\to\mathbb{R}$ +\end_inset + +. + Velja \begin_inset Formula $\exists\lim_{x\to a}f\left(x\right)\Leftrightarrow\exists\lim_{x\nearrow a}f\left(x\right)\wedge\exists\lim_{x\searrow a}f\left(x\right)\wedge\lim_{x\nearrow a}f\left(x\right)=\lim_{x\searrow a}f\left(x\right)$ +\end_inset + + V tem primeru velja +\begin_inset Formula $\lim_{x\to a}f\left(x\right)=\lim_{x\nearrow a}f\left(x\right)=\lim_{x\searrow a}f\left(x\right)$ \end_inset . @@ -8315,8 +8425,1293 @@ skok . \end_layout -\begin_layout Corollary* -sssssssssss +\begin_layout Example* +\begin_inset Formula $\lim_{x\to0}\frac{1}{1+e^{1/x}}$ +\end_inset + + ne obstaja. + Zakaj? + Izračunajmo levo in desno limito: +\begin_inset Formula +\[ +\lim_{x\searrow0}\frac{1}{1+e^{1/x}}=0,\lim_{x\nearrow0}\frac{1}{1+e^{1/x}}=1 +\] + +\end_inset + +Toda +\begin_inset Formula $\exists\lim_{x\to a}f\left(x\right)\Leftrightarrow\exists\lim_{x\nearrow a}f\left(x\right)\wedge\exists\lim_{x\searrow a}f\left(x\right)\wedge\lim_{x\nearrow a}f\left(x\right)=\lim_{x\searrow a}f\left(x\right)$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +Funkcija +\begin_inset Formula $f$ +\end_inset + + je na intervalu +\begin_inset Formula $D$ +\end_inset + + odsekoma zvezna, + če je zvezna povsod na +\begin_inset Formula $D$ +\end_inset + +, + razen morda v končno mnogo točkah, + v katerih ima skok. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Example* +Naj bo +\begin_inset Formula $f:\mathbb{R}\setminus\left\{ 0\right\} \to\mathbb{R}$ +\end_inset + + s predpisom +\begin_inset Formula $x\mapsto\frac{\sin x}{x}$ +\end_inset + +. + Zanima nas, + ali obstaja +\begin_inset Formula $\lim_{x\to0}f\left(x\right)$ +\end_inset + +. + Grafični dokaz. +\end_layout + +\begin_layout Example* +\begin_inset Float figure +placement document +alignment document +wide false +sideways false +status open + +\begin_layout Plain Layout +TODO XXX FIXME SKICA S TKZ EUCLID, + glej ZVZ III/ANA1P1120/str.8 +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +Skica. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + +Očitno velja +\begin_inset Formula $\triangle ABD\subset$ +\end_inset + + krožni izsek +\begin_inset Formula $DAB\subset\triangle ABC$ +\end_inset + +, + torej za njihove ploščine velja +\begin_inset Formula +\[ +\frac{\sin x}{2}\leq\frac{x}{2\pi}\cdot x=\frac{x}{2}\leq\frac{\tan x}{2}\quad\quad\quad\quad/\cdot\frac{2}{\sin x} +\] + +\end_inset + + +\begin_inset Formula +\[ +1\leq\frac{x}{\sin x}\leq\frac{1}{\cos x}\quad\quad\quad\quad/\lim_{x\to0} +\] + +\end_inset + + +\begin_inset Formula +\[ +\lim_{x\to0}1\leq\lim_{x\to0}\frac{x}{\sin x}\leq\lim_{x\to0}\frac{1}{\cos x} +\] + +\end_inset + + +\begin_inset Formula +\[ +1\leq\lim_{x\to0}\frac{x}{\sin x}\leq1 +\] + +\end_inset + + +\begin_inset Formula +\[ +\lim_{x\to0}\frac{x}{\sin x}=1 +\] + +\end_inset + +Da naš sklep res potrdimo, + je potreben spodnji izrek. +\end_layout + +\begin_layout Theorem* +Če za +\begin_inset Formula $f,g,h:D\to\mathbb{R}$ +\end_inset + + velja za +\begin_inset Formula $a\in D$ +\end_inset + +: +\end_layout + +\begin_deeper +\begin_layout Itemize +\begin_inset Formula $\exists\varepsilon>0\forall x\in\left(a-\varepsilon,a+\varepsilon\right)\setminus\left\{ a\right\} :f\left(x\right)\leq g\left(x\right)\leq h\left(x\right)$ +\end_inset + + in hkrati +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\exists\lim_{x\to a}f\left(x\right),\lim_{x\to a}h\left(x\right)$ +\end_inset + + in +\begin_inset Formula $\lim_{x\to a}f\left(x\right)=\lim_{x\to a}h\left(x\right)\eqqcolon L$ +\end_inset + +, + tedaj tudi +\begin_inset Formula $\exists\lim_{x\to a}g\left(x\right)$ +\end_inset + + in +\begin_inset Formula $\lim_{x\to a}g\left(x\right)=L$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Proof +Naj bo +\begin_inset Formula $A=A\left(x\right)\coloneqq\max\left\{ \left|f\left(x\right)-L\right|,\left|h\left(x\right)-L\right|\right\} $ +\end_inset + +. + Velja +\end_layout + +\begin_deeper +\begin_layout Itemize +\begin_inset Formula $g\left(x\right)-L\leq h\left(x\right)-L\leq\left|h\left(x\right)-L\right|\leq A\left(x\right)$ +\end_inset + + in +\end_layout + +\begin_layout Itemize +\begin_inset Formula $L-g\left(x\right)\leq L-f\left(x\right)\leq\left|f\left(x\right)-L\right|\leq A\left(x\right)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Proof +Posledično +\begin_inset Formula $\left|g\left(x\right)-L\right|\leq A\left(x\right)$ +\end_inset + +. + Naj bo sedaj +\begin_inset Formula $\varepsilon>0$ +\end_inset + + poljuben. + Tedaj velja +\begin_inset Formula $\exists\delta_{1}>0\ni:\left|x-a\right|<\delta_{1}\Rightarrow\left|f\left(x\right)-L\right|<\varepsilon$ +\end_inset + + in +\begin_inset Formula $\exists\delta_{2}>0\ni:\left|x-a\right|<\delta_{2}\Rightarrow\left|h\left(x\right)-L\right|<\varepsilon$ +\end_inset + +. + Za +\begin_inset Formula $\delta\coloneqq\min\left\{ \delta_{1},\delta_{2}\right\} $ +\end_inset + + torej velja +\begin_inset Formula $\left|x-a\right|<\delta\Rightarrow\left|g\left(x\right)-L\right|<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Zvezne funkcije na kompaktnih množicah +\end_layout + +\begin_layout Definition* +Množica +\begin_inset Formula $K\subseteq\mathbb{R}$ +\end_inset + + je kompaktna +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + je zaprta in omejena ZDB je unija zaprtih intervalov. +\end_layout + +\begin_layout Theorem* +Naj bo +\begin_inset Formula $K\subset\mathbb{R}$ +\end_inset + + kompaktna in +\begin_inset Formula $f:K\to\mathbb{R}$ +\end_inset + + zvezna. + Tedaj je +\begin_inset Formula $f$ +\end_inset + + omejena in doseže minimum in maksimum. +\end_layout + +\begin_layout Example* +Primeri funkcij. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Formula $f_{1}\left(x\right)=\frac{1}{x}$ +\end_inset + + na +\begin_inset Formula $I_{1}=(0,1]$ +\end_inset + +. + +\begin_inset Formula $f_{1}$ +\end_inset + + je zvezna in +\begin_inset Formula $\lim_{x\to0}f_{1}\left(x\right)=\infty$ +\end_inset + +, + torej ni omejena, + a +\begin_inset Formula $I_{1}$ +\end_inset + + ni zaprt. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f_{2}\left(x\right)=\begin{cases} +0 & ;x=0\\ +\frac{1}{x} & ;x\in(0,1] +\end{cases}$ +\end_inset + + ni omejena in je definirana na kompaktni množici, + a ni zvezna. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f_{3}\left(x\right)=x$ +\end_inset + + na +\begin_inset Formula $x\in\left(0,1\right)$ +\end_inset + +. + Je omejena, + ne doseže maksimuma, + a +\begin_inset Formula $D_{f_{3}}$ +\end_inset + + ni kompaktna (ni zaprta). +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f_{4}\left(x\right)=\begin{cases} +x & ;x\in\left(0,1\right)\\ +\frac{1}{2} & ;x\in\left\{ 0,1\right\} +\end{cases}$ +\end_inset + +. + Velja +\begin_inset Formula $\sup f_{4}=1$ +\end_inset + +, + ampak ga ne doseže, + a ni zvezna +\end_layout + +\end_deeper +\begin_layout Proof +Naj bo +\begin_inset Formula $K\subseteq\mathbb{R}$ +\end_inset + + kompaktna in +\begin_inset Formula $f:K\to\mathbb{R}$ +\end_inset + + zvezna. +\end_layout + +\begin_deeper +\begin_layout Itemize +Omejenost navzgor: + PDDRAA +\begin_inset Formula $f$ +\end_inset + + ni navzgor omejena. + Tedaj +\begin_inset Formula $\forall n\in\mathbb{N}\exists x_{n}\in K\ni:f\left(x_{n}\right)\geq n$ +\end_inset + + (*). + Ker je +\begin_inset Formula $\left(x_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + omejeno zaporedje (vsi členi so na kompaktni +\begin_inset Formula $K$ +\end_inset + +), + ima stekališče, + recimo mu +\begin_inset Formula $s\in\mathbb{R}$ +\end_inset + +. + Vemo, + da tedaj obstaja podzaporedje +\begin_inset Formula $\left(x_{n_{k}}\right)_{k\in\mathbb{N}}\ni:s=\lim_{k\to\infty}x_{n_{k}}$ +\end_inset + +. + Ker je +\begin_inset Formula $K$ +\end_inset + + tudi zaprta, + sledi +\begin_inset Formula $s\in K$ +\end_inset + +. + Ker je +\begin_inset Formula $f$ +\end_inset + + zvezna na +\begin_inset Formula $K$ +\end_inset + +, + velja +\begin_inset Formula $f\left(s\right)=\lim_{k\to\infty}f\left(x_{n_{k}}\right)$ +\end_inset + +. + Toda po (*) sledi +\begin_inset Formula $\lim_{k\to\infty}f\left(x_{n_{k}}\right)=\infty$ +\end_inset + +, + zato +\begin_inset Formula $f\left(s\right)=\infty$ +\end_inset + +, + kar ni mogoče, + saj je +\begin_inset Formula $f\left(s\right)\in\mathbb{R}$ +\end_inset + +. + +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + +. + Torej je +\begin_inset Formula $f$ +\end_inset + + navzgor omejena. +\end_layout + +\begin_layout Itemize +Omejenost navzdol: + PDDRAA +\begin_inset Formula $f$ +\end_inset + + ni navzdol omejena. + Tedaj +\begin_inset Formula $\forall n\in\mathbb{N}\exists x_{n}\in K\ni:f\left(x_{n}\right)\leq-n$ +\end_inset + + (*). + Ker je +\begin_inset Formula $\left(x_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + omejeno zaporedje (vsi členi so na kompaktni +\begin_inset Formula $K$ +\end_inset + +), + ima stekališče, + recimo mu +\begin_inset Formula $s\in\mathbb{R}$ +\end_inset + +. + Vemo, + da tedaj obstaja podzaporedje +\begin_inset Formula $\left(x_{n_{k}}\right)_{k\in\mathbb{N}}\ni:s=\lim_{k\to\infty}x_{n_{k}}$ +\end_inset + +. + Ker je +\begin_inset Formula $K$ +\end_inset + + tudi zaprta, + sledi +\begin_inset Formula $s\in K$ +\end_inset + +. + Ker je +\begin_inset Formula $f$ +\end_inset + + zvezna na +\begin_inset Formula $K$ +\end_inset + +, + velja +\begin_inset Formula $f\left(s\right)=\lim_{k\to\infty}f\left(x_{n_{k}}\right)$ +\end_inset + +. + Toda po (*) sledi +\begin_inset Formula $\lim_{k\to\infty}f\left(s_{n_{k}}\right)=-\infty$ +\end_inset + +, + zato +\begin_inset Formula $f\left(s\right)=-\infty$ +\end_inset + +, + kar ni mogoče, + saj je +\begin_inset Formula $f\left(s\right)\in\mathbb{R}$ +\end_inset + +. + +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + +. + Torej je +\begin_inset Formula $f$ +\end_inset + + navzgor omejena. + +\end_layout + +\begin_layout Itemize +Doseže maksimum: + Označimo +\begin_inset Formula $M\coloneqq\sup_{x\in K}f\left(x\right)$ +\end_inset + +. + Ravnokar smo dokazali, + da +\begin_inset Formula $M<\infty$ +\end_inset + +. + Po definiciji supremuma +\begin_inset Formula $\forall n\in\mathbb{N}\exists t_{n}\in K\ni:f\left(t_{n}\right)>M-\frac{1}{n}$ +\end_inset + +. + Ker je +\begin_inset Formula $K$ +\end_inset + + omejena, + ima +\begin_inset Formula $\left(t_{n}\right)_{n}$ +\end_inset + + stekališče in ker je zaprta, + velja +\begin_inset Formula $t\in K$ +\end_inset + +, + zato +\begin_inset Formula $\exists$ +\end_inset + + podzaporedje +\begin_inset Formula $\left(t_{n_{j}}\right)_{j\in\mathbb{N}}\ni:t=\lim_{j\to\infty}t_{n_{j}}$ +\end_inset + +. + Ker je +\begin_inset Formula $f$ +\end_inset + + zvezna, + velja +\begin_inset Formula $f\left(t\right)=\lim_{j\to\infty}f\left(t_{n_{j}}\right)$ +\end_inset + +. + Toda ker +\begin_inset Formula $f\left(t_{n_{j}}\right)>M-\frac{1}{n_{j}}\geq M-\frac{1}{j}$ +\end_inset + +, + velja +\begin_inset Formula $f\left(t\right)\geq M$ +\end_inset + +. + Hkrati po definiciji +\begin_inset Formula $M$ +\end_inset + + velja +\begin_inset Formula $f\left(t\right)\leq M$ +\end_inset + +. + Sledi +\begin_inset Formula $M=f\left(t\right)$ +\end_inset + + in zato +\begin_inset Formula $M=\max_{x\in K}f\left(x\right)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Doseže minimum: + Označimo +\begin_inset Formula $M\coloneqq\inf_{x\in K}f\left(x\right)$ +\end_inset + +. + Ko smo dokazali omejenost, + smo dokazali, + da +\begin_inset Formula $M>-\infty$ +\end_inset + +. + Po definiciji infimuma +\begin_inset Formula $\forall n\in\mathbb{N}\exists t_{n}\in K\ni:f\left(t_{n}\right)0$ +\end_inset + + in +\begin_inset Formula $g$ +\end_inset + + zvezna na +\begin_inset Formula $\left[x_{-}-y,x_{+}-y\right]$ +\end_inset + +, + torej po prejšnjem izreku +\begin_inset Formula $\exists x\in\left[x_{-}-y,x_{+}-y\right]\ni:g\left(x\right)=0$ +\end_inset + +, + kar pomeni ravno +\begin_inset Formula $f\left(x\right)=y$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Naj bo +\begin_inset Formula $I$ +\end_inset + + poljuben interval med +\begin_inset Formula $a,b\in\mathbb{R}\cup\left\{ -\infty,\infty\right\} $ +\end_inset + + in +\begin_inset Formula $f:I\to\mathbb{R}$ +\end_inset + + zvezna in strogo monotona. + Tedaj je +\begin_inset Formula $f\left(I\right)$ +\end_inset + + interval med +\begin_inset Formula $f\left(a+0\right)$ +\end_inset + + in +\begin_inset Formula $f\left(a-0\right)$ +\end_inset + +. + Inverzna funkcija +\begin_inset Formula $f^{-1}$ +\end_inset + + je definirana na +\begin_inset Formula $f\left(I\right)$ +\end_inset + + in zvezna. +\end_layout + +\begin_layout Example* +\begin_inset Formula $f\coloneqq\arctan$ +\end_inset + +, + +\begin_inset Formula $I\coloneqq\left(-\infty,\infty\right)$ +\end_inset + +, + zvezna. + Naj bo +\begin_inset Formula $y\in f\left(I\right)$ +\end_inset + + poljuben. + Tedaj +\begin_inset Formula $\exists!x\in I\ni:y=f\left(x\right)$ +\end_inset + + in definiramo +\begin_inset Formula $x\coloneqq f^{-1}\left(x\right)$ +\end_inset + +. + +\begin_inset Formula $f^{-1}$ +\end_inset + + obstaja in je spet zvezna. +\end_layout + +\begin_layout Proof +Ne bomo dokazali. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Označimo +\begin_inset Formula $g=f^{-1}:f\left(I\right)\to\mathbb{R}$ +\end_inset + +. + Uporabimo +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hyperlink{kzsppom}{karakterizacijo zveznosti s pomočjo praslik odprtih množic} +\end_layout + +\end_inset + +. + Dokazujemo torej, + da +\begin_inset Formula $\forall V^{\text{odp.}}\subset\mathbb{R}:g^{-1}\left(V\right)$ +\end_inset + + je zopet odprta množica +\begin_inset Formula $\subseteq f\left(I\right)$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Velja +\begin_inset Formula $g^{-1}\left(V\right)=\left\{ x\in f\left(I\right);g\left(x\right)\in V\right\} =\left\{ x\in f\left(I\right):\exists v\in V\cap I\ni:x=f\left(v\right)\right\} =f\left(V\cap I\right)$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Torej dokazujemo +\begin_inset Formula $\forall V^{\text{odp.}}\subset\mathbb{R}:f\left(I\cap V\right)$ +\end_inset + + je spet zopet odprta +\begin_inset Formula $\subseteq f\left(I\right)$ +\end_inset + +, + kar je ekvivalentno +\begin_inset Formula +\[ +\forall y\in f\left(I\cap V\right)\exists\delta>0\ni:\left(y-\delta,y+\delta\right)\cap f\left(I\right)\subset f\left(I\cap V\right). +\] + +\end_inset + +Pišimo +\begin_inset Formula $y=f\left(x\right),x\in I\cap V$ +\end_inset + +. + Privzemimo, + da +\begin_inset Formula $f$ +\end_inset + + narašča (če pada, + ravnamo podobno). + Ker jer +\begin_inset Formula $ $ +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Enakomerna zveznost +\end_layout + +\begin_layout Definition* +\begin_inset Formula $f:I\to\mathbb{R}$ +\end_inset + + je enakomerno zvezna na +\begin_inset Formula $I$ +\end_inset + +, + če +\begin_inset Formula +\[ +\forall\varepsilon>0\exists\delta>0\forall x,y\in I:\left|x-y\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(y\right)\right|<\varepsilon. +\] + +\end_inset + + +\end_layout + +\begin_layout Note* +Primerjajmo to z definicijo +\begin_inset Formula $f:I\to\mathbb{R}$ +\end_inset + + je (nenujno enakomerno) zvezna na +\begin_inset Formula $I$ +\end_inset + +, + če +\begin_inset Formula +\[ +\forall\varepsilon>0,a\in I\exists\delta>0\forall x\in I:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(y\right)\right|<\varepsilon. +\] + +\end_inset + +Pri slednji definiciji je +\begin_inset Formula $\delta$ +\end_inset + + odvisna od +\begin_inset Formula $\varepsilon$ +\end_inset + + in +\begin_inset Formula $a$ +\end_inset + +, + pri enakomerni zveznosti pa le od +\begin_inset Formula $\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Example* +\begin_inset Formula $f\left(x\right)=\frac{1}{x}$ +\end_inset + + ni enakomerno zvezna, + ker je +\begin_inset Formula $\delta$ +\end_inset + + odvisen od +\begin_inset Formula $a$ +\end_inset + +. + Če pri fiksnem +\begin_inset Formula $\varepsilon$ +\end_inset + + pomaknemo tisto pozitivno točko, + v kateri preizkušamo zveznost, + bolj v levo, + bo na neki točki potreben ožji, + manjši +\begin_inset Formula $\delta$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Corollary* +sssssssssss \end_layout \begin_layout Corollary* -- cgit v1.2.3