From 49e2c3b52a774bf4db880d0a864b45b203db4729 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Anton=20Luka=20=C5=A0ijanec?= Date: Wed, 5 Oct 2022 23:51:32 +0200 Subject: 1, 2 fizvaj --- .gitignore | 4 + fiz/vaje/1/dokument.lyx | 4 +- fiz/vaje/2/.gitignore | 1 + fiz/vaje/2/dokument.lyx | 1411 +++++++++++++++++++++++++++++++++++++++++++++++ fiz/vaje/2/podatki.sh | 8 + fiz/vaje/2/podatki.tsv | 7 + 6 files changed, 1434 insertions(+), 1 deletion(-) create mode 100644 fiz/vaje/2/.gitignore create mode 100644 fiz/vaje/2/dokument.lyx create mode 100755 fiz/vaje/2/podatki.sh create mode 100644 fiz/vaje/2/podatki.tsv diff --git a/.gitignore b/.gitignore index 3f4987e..3dc5117 100644 --- a/.gitignore +++ b/.gitignore @@ -1,2 +1,6 @@ *.pdf .~lock.*.od*# +fit.log +core +*.lyx~ +\#*.lyx# diff --git a/fiz/vaje/1/dokument.lyx b/fiz/vaje/1/dokument.lyx index 55e1637..745646e 100644 --- a/fiz/vaje/1/dokument.lyx +++ b/fiz/vaje/1/dokument.lyx @@ -86,11 +86,13 @@ Ravnovesje togega telesa \end_layout \begin_layout Author + +\noun on Anton Luka Šijanec \end_layout \begin_layout Date -2. +3. oktober 2022 \end_layout diff --git a/fiz/vaje/2/.gitignore b/fiz/vaje/2/.gitignore new file mode 100644 index 0000000..420a327 --- /dev/null +++ b/fiz/vaje/2/.gitignore @@ -0,0 +1 @@ +vsi.tsv diff --git a/fiz/vaje/2/dokument.lyx b/fiz/vaje/2/dokument.lyx new file mode 100644 index 0000000..fcd20d4 --- /dev/null +++ b/fiz/vaje/2/dokument.lyx @@ -0,0 +1,1411 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass article +\begin_preamble +\usepackage{siunitx} +\usepackage{pgfplots} +\usepackage{listings} +\sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language slovene +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style german +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +Kotaljenje kroglice po klancu +\end_layout + +\begin_layout Author + +\noun on +Anton Luka Šijanec +\end_layout + +\begin_layout Date +3. + oktober 2022 +\end_layout + +\begin_layout Abstract +Poročilo druge vaje pri predmetu +\noun on +F41 +\noun default + na Gimnaziji Bežigrad v 4. + letniku. + Vaja je potekala 15. + septembra 2022. +\end_layout + +\begin_layout Standard +\begin_inset CommandInset toc +LatexCommand tableofcontents + +\end_inset + + +\end_layout + +\begin_layout Section +Naloga +\end_layout + +\begin_layout Enumerate +Dokaži, da je kotaljenje kroglice po klancu enakomerno pospešeno gibanje. +\end_layout + +\begin_layout Enumerate +Za gibanje kroglice po klancu navzdol določi povprečno hitrost in pospešek + pri kotaljenju. + Določi tudi napako obeh količin. +\end_layout + +\begin_layout Enumerate +Dobljeni pospešek primerjaj s pospeškom za telo, ki bi brez trenja drselo + po klancu z enakom naklonom. +\end_layout + +\begin_layout Section +Potrebščine +\end_layout + +\begin_layout Itemize +aluminijast profil dolžine +\begin_inset Formula $\SI{1}{\meter}$ +\end_inset + + +\end_layout + +\begin_layout Itemize +kovinska kroglica +\end_layout + +\begin_layout Itemize +merilna ura +\end_layout + +\begin_layout Itemize +ravnilo ali merilni trak +\end_layout + +\begin_layout Section +Potek dela +\end_layout + +\begin_layout Subsection +Spreminjanje lege po klancu kotaleče se kroglice s časom +\end_layout + +\begin_layout Enumerate +Kroglico spusti po klancu in izmeri, koliko časa kroglica potuje prvih +\begin_inset Formula $\SI{4,0}{\centi\meter}$ +\end_inset + +, +\begin_inset Formula $\SI{16}{\centi\meter}$ +\end_inset + +, +\begin_inset Formula $\SI{36}{\centi\meter}$ +\end_inset + + in +\begin_inset Formula $\SI{100}{\centi\meter}$ +\end_inset + +. + Vse meritve zapiši v ustrezno tabelo. + Nariši graf +\begin_inset Formula $x\left(t\right)$ +\end_inset + +. + Za kakšno gibanje gre? Kako lahko to dokažeš? +\begin_inset Newline newline +\end_inset + + +\begin_inset Float table +placement h +wide false +sideways false +status open + +\begin_layout Plain Layout +\align center +\begin_inset Tabular + + + + + + + + + + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $d\text{\left[\si{\meter}\right]}$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $t_{1}\left[\si{\second}\right]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $t_{2}\left[\si{\second}\right]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $t_{3}\left[\si{\second}\right]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $t_{4}\left[\si{\second}\right]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\overline{{t}}$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $t^{2}\left[\si{\second\squared}\right]$ +\end_inset + + +\end_layout + +\end_inset + + + + +\begin_inset Text + +\begin_layout Plain Layout +0 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +0 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +0 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +0 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +0 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +0 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +0 +\end_layout + +\end_inset + + + + +\begin_inset Text + +\begin_layout Plain Layout +0,04 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +0,6 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +0,5 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +0,5 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +0,5 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +0,525 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +0,275626 +\end_layout + +\end_inset + + + + +\begin_inset Text + +\begin_layout Plain Layout +0,16 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +1,0 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +1,3 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +1,4 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +1,3 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +1,25 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +1,5625 +\end_layout + +\end_inset + + + + +\begin_inset Text + +\begin_layout Plain Layout +0,36 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +2 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +2,1 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +2,4 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +2,1 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +2,15 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +4,6225 +\end_layout + +\end_inset + + + + +\begin_inset Text + +\begin_layout Plain Layout +0,64 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +2,8 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +2,9 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +3,2 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +2,8 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +2,925 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +8,555625 +\end_layout + +\end_inset + + + + +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +3,6 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +3,5 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +4,0 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +3,6 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +3,675 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +13,505625 +\end_layout + +\end_inset + + + + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +Čas, potreben za dosego določenih točk +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Newline newline +\end_inset + +Gre za enakomerno pospešeno gibanje, kar je razvidno iz dejstva, da +\begin_inset Formula $d$ +\end_inset + + raste s kvadratom +\begin_inset Formula $t$ +\end_inset + +. + Če torej lineariziramo, +\begin_inset Formula $d$ +\end_inset + + raste linearno s +\begin_inset Formula $t^{2}.$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +Nariši graf, iz kategega lahko razbereš pospešek gibanja, ter določi pospešek. + Kako lahko iz grafa oceniš napako pospeška? +\begin_inset Newline newline +\end_inset + +S programom +\family typewriter +gnuplot +\family default + izračunamo enačbi krivulj, ki se točkam najbolj prilegajo: +\begin_inset Newline newline +\end_inset + + +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{lstlisting} +\end_layout + +\begin_layout Plain Layout + +fit sqrt(x*a) "podatki.tsv" using 1:6 via a +\end_layout + +\begin_layout Plain Layout + +fit (x*b) +\begin_inset Quotes gld +\end_inset + +podatki.tsv +\begin_inset Quotes grd +\end_inset + + using 1:7 via b +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{lstlisting} +\end_layout + +\end_inset + +in dobimo vrednosti parametrov +\begin_inset Formula $a=12,9273$ +\end_inset + + s standardno napako +\begin_inset Formula $\pm0,6204$ +\end_inset + + oziroma +\begin_inset Formula $4,799\%$ +\end_inset + + in +\begin_inset Formula $b=\SI{13,3468}{\meter\per\second\squared}$ +\end_inset + + s standardno napako +\begin_inset Formula $\pm0,2407$ +\end_inset + + oziroma +\begin_inset Formula $1,803\%$ +\end_inset + +. + +\begin_inset Formula $b$ +\end_inset + + je koeficient premice na grafu +\begin_inset CommandInset ref +LatexCommand ref +reference "fig:graf" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +, torej iskani pospešek. +\begin_inset Newline newline +\end_inset + +Standardna napaka pospeška je +\begin_inset Formula +\[ +\sigma_{\overline{{t^{2}}}}=\SI{0,2407}{\meter\per\second\squared}\text{{.}} +\] + +\end_inset + + +\begin_inset Foot +status open + +\begin_layout Plain Layout +Standardni odklon se izračuna po enačbi +\begin_inset Formula +\[ +\sigma_{\overline{{x}}}=\sqrt{{\frac{{\mathop{\sum_{i=0}^{n}\left(x_{i}-\overline{{x}}\right)^{2}}}}{{n}}}}\text{{.}} +\] + +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Float figure +placement h +wide false +sideways false +status open + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{tikzpicture} +\end_layout + +\begin_layout Plain Layout + + +\backslash +begin{axis}[width=0.75 +\backslash +textwidth, scale only axis, ylabel=$ +\backslash +color{red}t +\backslash +color{black}$, domain=0:1, ytick pos=left, samples=256] +\end_layout + +\begin_layout Plain Layout + + +\backslash +addplot[red, only marks] table [x=d, y=t] {podatki.tsv}; +\end_layout + +\begin_layout Plain Layout + + +\backslash +addplot[red] (x, {sqrt(x*12.9273)}); +\end_layout + +\begin_layout Plain Layout + + +\backslash +addplot[green] (x, {sqrt(x*(12.9273+0.6204))}); +\end_layout + +\begin_layout Plain Layout + + +\backslash +addplot[green] (x, {sqrt(x*(12.9273-0.6204))}); +\end_layout + +\begin_layout Plain Layout + +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{axis} +\end_layout + +\begin_layout Plain Layout + + +\backslash +begin{axis}[width=0.75 +\backslash +textwidth, scale only axis, xlabel=$d$, ylabel=$t^2$, ylabel near ticks, + domain=0:1, xtick pos=bottom, ytick pos=right, axis y line*=right] +\end_layout + +\begin_layout Plain Layout + + +\backslash +addplot[only marks] table [x=d, y=t2] {podatki.tsv}; +\end_layout + +\begin_layout Plain Layout + + +\backslash +addplot[black] (x, {x*13.3468}); +\end_layout + +\begin_layout Plain Layout + + +\backslash +addplot[green] (x, {x*(13.3468+0.2407)}); +\end_layout + +\begin_layout Plain Layout + + +\backslash +addplot[green] (x, {x*(13.3468-0.2407)}); +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{axis} +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{tikzpicture} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +\begin_inset CommandInset label +LatexCommand label +name "fig:graf" + +\end_inset + +Grafa +\begin_inset Formula $t$ +\end_inset + + in +\begin_inset Formula $t^{2}$ +\end_inset + + v odvisnosti od +\begin_inset Formula $d$ +\end_inset + +. + Čas se tukaj sicer neobičajno pojavi na ordinatni osi, kar je smiselno, + saj je to izmerjena količina. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Čas, potreben za kotaljenje kroglice po celotni dolžini klanca +\begin_inset CommandInset label +LatexCommand label +name "subsec:Čas,-potreben-za" + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Kroglico spusti po rahlo nagnjenem klancu ter meri čas gibanja. + Pazi, da ta čas ni prekratek. + Meritev ponovi vsaj osemkrat, izračunaj povprečni čas ter zapiši rezultat + meritve z absolutno in relativno napako. +\begin_inset Newline newline +\end_inset + +Ne pozabi izmeriti naklonskega kota klanca! +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula +\[ +\phi=\sin\frac{{\SI{0,02}{\meter}}}{\SI{1,00}{\meter}}=\ang{1,14699199839} +\] + +\end_inset + + +\begin_inset Float table +wide false +sideways false +status open + +\begin_layout Plain Layout +\begin_inset Tabular + + + + + + + + + + + + + + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $t_{1}\left[\si{\second}\right]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout + +\series bold +\begin_inset Formula $t_{2}\left[\si{\second}\right]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $t_{3}\left[\si{\second}\right]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $t_{4}\left[\si{\second}\right]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $t_{5}\left[\si{\second}\right]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $t_{6}\left[\si{\second}\right]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $t_{7}\left[\si{\second}\right]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $t_{8}\left[\si{\second}\right]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\overline{{t}}\left[\si{\second}\right]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\sigma_{\overline{{t}}}\left[\si{\second}\right]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\sigma_{\overline{{t}}}:\overline{{t}}\left[\si{\second\per\second}\right]$ +\end_inset + + +\end_layout + +\end_inset + + + + +\begin_inset Text + +\begin_layout Plain Layout +4,3 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +3,9 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +3,8 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +3,8 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +4,2 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +3,8 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +3,7 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +3,8 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +3,9125 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +0,20 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $5,18\%$ +\end_inset + + +\end_layout + +\end_inset + + + + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +Čas, potreben za spust kroglice po klancu nizdol. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Izračunaj povprečno hitrost ter zapiši rezultat z absolutno in relativno + napako. +\begin_inset Formula +\[ +\overline{v}=\overline{{t}}^{-1}=\SI{0,255591}{\meter\per\second}\left(1\pm0,0518\right)=\SI{0,255591}{\meter\per\second}\pm\SI{0,013}{\meter\per\second} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Izračunaj pospešek ter zapiši rezultat z absolutno in relativno napako. +\begin_inset Formula +\[ +v_{\text{{max}}}=2\overline{{v}} +\] + +\end_inset + + +\begin_inset Formula +\[ +\overline{{a}}=\frac{v_{\text{{max}}}}{\overline{{t}}}=\SI{0,065326}{\meter\per\second\squared}1\pm2\cdot0,0518=\SI{0,065326}{\meter\per\second\squared}\pm\SI{0,003384}{\meter\per\second\squared} +\] + +\end_inset + + +\end_layout + +\begin_layout Subsection +Izračun pospeška po klancu brez trenja drsečega telesa +\end_layout + +\begin_layout Standard +Izračunaj pospešek za telo, ki bi brez trenja drselo po klancu iz naloge + +\begin_inset CommandInset ref +LatexCommand ref +reference "subsec:Čas,-potreben-za" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +, primerjaj rezultata ter zapiši ugotovitve. +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +F_{g}\tan\phi=F_{d}\rightarrow\cancel{{m}}g(\sin\phi=0,02)=\cancel{m}a=\SI{0,1962}{\meter\per\second\squared} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Kroglica med premikanjem nekaj energije porablja tudi za vrtenje — to je + moja hipoteza, zakaj je pospešek drsečega telesa večji od izmerjenega pospeška + kotalegeča se telesa. +\end_layout + +\end_body +\end_document diff --git a/fiz/vaje/2/podatki.sh b/fiz/vaje/2/podatki.sh new file mode 100755 index 0000000..eff7ce6 --- /dev/null +++ b/fiz/vaje/2/podatki.sh @@ -0,0 +1,8 @@ +#!/bin/bash +while read line +do + t=`cut -f6 <<<$line` + t2=`cut -f7 <<<$line` + d=`cut -f1 <<<$line` + [ x$d = xd ] && echo $line tn t2n || echo $line `dc -e "10k$d 12.9273*v$t-p"` `dc -e "10k$d 13.3468*$t2-p"` +done < podatki.tsv > vsi.tsv diff --git a/fiz/vaje/2/podatki.tsv b/fiz/vaje/2/podatki.tsv new file mode 100644 index 0000000..aa98925 --- /dev/null +++ b/fiz/vaje/2/podatki.tsv @@ -0,0 +1,7 @@ +d t1 t2 t3 t4 t t2 +0 0 0 0 0 0 0 +0.04 0.6 0.5 0.5 0.5 0.525 0.275626 +0.16 1.0 1.3 1.4 1.3 1.25 1.5625 +0.36 2 2.1 2.4 2.1 2.15 4.6225 +0.64 2.8 2.9 3.2 2.8 2.925 8.555625 +1 3.6 3.5 4.0 3.6 3.675 13.505625 -- cgit v1.2.3