summaryrefslogtreecommitdiffstats
path: root/external/include/glm/gtx/matrix_decompose.inl
diff options
context:
space:
mode:
Diffstat (limited to 'external/include/glm/gtx/matrix_decompose.inl')
-rw-r--r--external/include/glm/gtx/matrix_decompose.inl187
1 files changed, 0 insertions, 187 deletions
diff --git a/external/include/glm/gtx/matrix_decompose.inl b/external/include/glm/gtx/matrix_decompose.inl
deleted file mode 100644
index 02a5acc..0000000
--- a/external/include/glm/gtx/matrix_decompose.inl
+++ /dev/null
@@ -1,187 +0,0 @@
-/// @ref gtx_matrix_decompose
-/// @file glm/gtx/matrix_decompose.inl
-
-#include "../gtc/constants.hpp"
-#include "../gtc/epsilon.hpp"
-
-namespace glm{
-namespace detail
-{
- /// Make a linear combination of two vectors and return the result.
- // result = (a * ascl) + (b * bscl)
- template<typename T, qualifier Q>
- GLM_FUNC_QUALIFIER vec<3, T, Q> combine(
- vec<3, T, Q> const& a,
- vec<3, T, Q> const& b,
- T ascl, T bscl)
- {
- return (a * ascl) + (b * bscl);
- }
-
- template<typename T, qualifier Q>
- GLM_FUNC_QUALIFIER vec<3, T, Q> scale(vec<3, T, Q> const& v, T desiredLength)
- {
- return v * desiredLength / length(v);
- }
-}//namespace detail
-
- // Matrix decompose
- // http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp
- // Decomposes the mode matrix to translations,rotation scale components
-
- template<typename T, qualifier Q>
- GLM_FUNC_QUALIFIER bool decompose(mat<4, 4, T, Q> const& ModelMatrix, vec<3, T, Q> & Scale, tquat<T, Q> & Orientation, vec<3, T, Q> & Translation, vec<3, T, Q> & Skew, vec<4, T, Q> & Perspective)
- {
- mat<4, 4, T, Q> LocalMatrix(ModelMatrix);
-
- // Normalize the matrix.
- if(epsilonEqual(LocalMatrix[3][3], static_cast<T>(0), epsilon<T>()))
- return false;
-
- for(length_t i = 0; i < 4; ++i)
- for(length_t j = 0; j < 4; ++j)
- LocalMatrix[i][j] /= LocalMatrix[3][3];
-
- // perspectiveMatrix is used to solve for perspective, but it also provides
- // an easy way to test for singularity of the upper 3x3 component.
- mat<4, 4, T, Q> PerspectiveMatrix(LocalMatrix);
-
- for(length_t i = 0; i < 3; i++)
- PerspectiveMatrix[i][3] = static_cast<T>(0);
- PerspectiveMatrix[3][3] = static_cast<T>(1);
-
- /// TODO: Fixme!
- if(epsilonEqual(determinant(PerspectiveMatrix), static_cast<T>(0), epsilon<T>()))
- return false;
-
- // First, isolate perspective. This is the messiest.
- if(
- epsilonNotEqual(LocalMatrix[0][3], static_cast<T>(0), epsilon<T>()) ||
- epsilonNotEqual(LocalMatrix[1][3], static_cast<T>(0), epsilon<T>()) ||
- epsilonNotEqual(LocalMatrix[2][3], static_cast<T>(0), epsilon<T>()))
- {
- // rightHandSide is the right hand side of the equation.
- vec<4, T, Q> RightHandSide;
- RightHandSide[0] = LocalMatrix[0][3];
- RightHandSide[1] = LocalMatrix[1][3];
- RightHandSide[2] = LocalMatrix[2][3];
- RightHandSide[3] = LocalMatrix[3][3];
-
- // Solve the equation by inverting PerspectiveMatrix and multiplying
- // rightHandSide by the inverse. (This is the easiest way, not
- // necessarily the best.)
- mat<4, 4, T, Q> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);// inverse(PerspectiveMatrix, inversePerspectiveMatrix);
- mat<4, 4, T, Q> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);// transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix);
-
- Perspective = TransposedInversePerspectiveMatrix * RightHandSide;
- // v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint);
-
- // Clear the perspective partition
- LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = static_cast<T>(0);
- LocalMatrix[3][3] = static_cast<T>(1);
- }
- else
- {
- // No perspective.
- Perspective = vec<4, T, Q>(0, 0, 0, 1);
- }
-
- // Next take care of translation (easy).
- Translation = vec<3, T, Q>(LocalMatrix[3]);
- LocalMatrix[3] = vec<4, T, Q>(0, 0, 0, LocalMatrix[3].w);
-
- vec<3, T, Q> Row[3], Pdum3;
-
- // Now get scale and shear.
- for(length_t i = 0; i < 3; ++i)
- for(length_t j = 0; j < 3; ++j)
- Row[i][j] = LocalMatrix[i][j];
-
- // Compute X scale factor and normalize first row.
- Scale.x = length(Row[0]);// v3Length(Row[0]);
-
- Row[0] = detail::scale(Row[0], static_cast<T>(1));
-
- // Compute XY shear factor and make 2nd row orthogonal to 1st.
- Skew.z = dot(Row[0], Row[1]);
- Row[1] = detail::combine(Row[1], Row[0], static_cast<T>(1), -Skew.z);
-
- // Now, compute Y scale and normalize 2nd row.
- Scale.y = length(Row[1]);
- Row[1] = detail::scale(Row[1], static_cast<T>(1));
- Skew.z /= Scale.y;
-
- // Compute XZ and YZ shears, orthogonalize 3rd row.
- Skew.y = glm::dot(Row[0], Row[2]);
- Row[2] = detail::combine(Row[2], Row[0], static_cast<T>(1), -Skew.y);
- Skew.x = glm::dot(Row[1], Row[2]);
- Row[2] = detail::combine(Row[2], Row[1], static_cast<T>(1), -Skew.x);
-
- // Next, get Z scale and normalize 3rd row.
- Scale.z = length(Row[2]);
- Row[2] = detail::scale(Row[2], static_cast<T>(1));
- Skew.y /= Scale.z;
- Skew.x /= Scale.z;
-
- // At this point, the matrix (in rows[]) is orthonormal.
- // Check for a coordinate system flip. If the determinant
- // is -1, then negate the matrix and the scaling factors.
- Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3);
- if(dot(Row[0], Pdum3) < 0)
- {
- for(length_t i = 0; i < 3; i++)
- {
- Scale[i] *= static_cast<T>(-1);
- Row[i] *= static_cast<T>(-1);
- }
- }
-
- // Now, get the rotations out, as described in the gem.
-
- // FIXME - Add the ability to return either quaternions (which are
- // easier to recompose with) or Euler angles (rx, ry, rz), which
- // are easier for authors to deal with. The latter will only be useful
- // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I
- // will leave the Euler angle code here for now.
-
- // ret.rotateY = asin(-Row[0][2]);
- // if (cos(ret.rotateY) != 0) {
- // ret.rotateX = atan2(Row[1][2], Row[2][2]);
- // ret.rotateZ = atan2(Row[0][1], Row[0][0]);
- // } else {
- // ret.rotateX = atan2(-Row[2][0], Row[1][1]);
- // ret.rotateZ = 0;
- // }
-
- int i, j, k = 0;
- float root, trace = Row[0].x + Row[1].y + Row[2].z;
- if(trace > static_cast<T>(0))
- {
- root = sqrt(trace + static_cast<T>(1.0));
- Orientation.w = static_cast<T>(0.5) * root;
- root = static_cast<T>(0.5) / root;
- Orientation.x = root * (Row[1].z - Row[2].y);
- Orientation.y = root * (Row[2].x - Row[0].z);
- Orientation.z = root * (Row[0].y - Row[1].x);
- } // End if > 0
- else
- {
- static int Next[3] = {1, 2, 0};
- i = 0;
- if(Row[1].y > Row[0].x) i = 1;
- if(Row[2].z > Row[i][i]) i = 2;
- j = Next[i];
- k = Next[j];
-
- root = sqrt(Row[i][i] - Row[j][j] - Row[k][k] + static_cast<T>(1.0));
-
- Orientation[i] = static_cast<T>(0.5) * root;
- root = static_cast<T>(0.5) / root;
- Orientation[j] = root * (Row[i][j] + Row[j][i]);
- Orientation[k] = root * (Row[i][k] + Row[k][i]);
- Orientation.w = root * (Row[j][k] - Row[k][j]);
- } // End if <= 0
-
- return true;
- }
-}//namespace glm