diff options
Diffstat (limited to 'external/include/glm/gtx/matrix_decompose.inl')
-rw-r--r-- | external/include/glm/gtx/matrix_decompose.inl | 187 |
1 files changed, 0 insertions, 187 deletions
diff --git a/external/include/glm/gtx/matrix_decompose.inl b/external/include/glm/gtx/matrix_decompose.inl deleted file mode 100644 index 02a5acc..0000000 --- a/external/include/glm/gtx/matrix_decompose.inl +++ /dev/null @@ -1,187 +0,0 @@ -/// @ref gtx_matrix_decompose -/// @file glm/gtx/matrix_decompose.inl - -#include "../gtc/constants.hpp" -#include "../gtc/epsilon.hpp" - -namespace glm{ -namespace detail -{ - /// Make a linear combination of two vectors and return the result. - // result = (a * ascl) + (b * bscl) - template<typename T, qualifier Q> - GLM_FUNC_QUALIFIER vec<3, T, Q> combine( - vec<3, T, Q> const& a, - vec<3, T, Q> const& b, - T ascl, T bscl) - { - return (a * ascl) + (b * bscl); - } - - template<typename T, qualifier Q> - GLM_FUNC_QUALIFIER vec<3, T, Q> scale(vec<3, T, Q> const& v, T desiredLength) - { - return v * desiredLength / length(v); - } -}//namespace detail - - // Matrix decompose - // http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp - // Decomposes the mode matrix to translations,rotation scale components - - template<typename T, qualifier Q> - GLM_FUNC_QUALIFIER bool decompose(mat<4, 4, T, Q> const& ModelMatrix, vec<3, T, Q> & Scale, tquat<T, Q> & Orientation, vec<3, T, Q> & Translation, vec<3, T, Q> & Skew, vec<4, T, Q> & Perspective) - { - mat<4, 4, T, Q> LocalMatrix(ModelMatrix); - - // Normalize the matrix. - if(epsilonEqual(LocalMatrix[3][3], static_cast<T>(0), epsilon<T>())) - return false; - - for(length_t i = 0; i < 4; ++i) - for(length_t j = 0; j < 4; ++j) - LocalMatrix[i][j] /= LocalMatrix[3][3]; - - // perspectiveMatrix is used to solve for perspective, but it also provides - // an easy way to test for singularity of the upper 3x3 component. - mat<4, 4, T, Q> PerspectiveMatrix(LocalMatrix); - - for(length_t i = 0; i < 3; i++) - PerspectiveMatrix[i][3] = static_cast<T>(0); - PerspectiveMatrix[3][3] = static_cast<T>(1); - - /// TODO: Fixme! - if(epsilonEqual(determinant(PerspectiveMatrix), static_cast<T>(0), epsilon<T>())) - return false; - - // First, isolate perspective. This is the messiest. - if( - epsilonNotEqual(LocalMatrix[0][3], static_cast<T>(0), epsilon<T>()) || - epsilonNotEqual(LocalMatrix[1][3], static_cast<T>(0), epsilon<T>()) || - epsilonNotEqual(LocalMatrix[2][3], static_cast<T>(0), epsilon<T>())) - { - // rightHandSide is the right hand side of the equation. - vec<4, T, Q> RightHandSide; - RightHandSide[0] = LocalMatrix[0][3]; - RightHandSide[1] = LocalMatrix[1][3]; - RightHandSide[2] = LocalMatrix[2][3]; - RightHandSide[3] = LocalMatrix[3][3]; - - // Solve the equation by inverting PerspectiveMatrix and multiplying - // rightHandSide by the inverse. (This is the easiest way, not - // necessarily the best.) - mat<4, 4, T, Q> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);// inverse(PerspectiveMatrix, inversePerspectiveMatrix); - mat<4, 4, T, Q> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);// transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix); - - Perspective = TransposedInversePerspectiveMatrix * RightHandSide; - // v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint); - - // Clear the perspective partition - LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = static_cast<T>(0); - LocalMatrix[3][3] = static_cast<T>(1); - } - else - { - // No perspective. - Perspective = vec<4, T, Q>(0, 0, 0, 1); - } - - // Next take care of translation (easy). - Translation = vec<3, T, Q>(LocalMatrix[3]); - LocalMatrix[3] = vec<4, T, Q>(0, 0, 0, LocalMatrix[3].w); - - vec<3, T, Q> Row[3], Pdum3; - - // Now get scale and shear. - for(length_t i = 0; i < 3; ++i) - for(length_t j = 0; j < 3; ++j) - Row[i][j] = LocalMatrix[i][j]; - - // Compute X scale factor and normalize first row. - Scale.x = length(Row[0]);// v3Length(Row[0]); - - Row[0] = detail::scale(Row[0], static_cast<T>(1)); - - // Compute XY shear factor and make 2nd row orthogonal to 1st. - Skew.z = dot(Row[0], Row[1]); - Row[1] = detail::combine(Row[1], Row[0], static_cast<T>(1), -Skew.z); - - // Now, compute Y scale and normalize 2nd row. - Scale.y = length(Row[1]); - Row[1] = detail::scale(Row[1], static_cast<T>(1)); - Skew.z /= Scale.y; - - // Compute XZ and YZ shears, orthogonalize 3rd row. - Skew.y = glm::dot(Row[0], Row[2]); - Row[2] = detail::combine(Row[2], Row[0], static_cast<T>(1), -Skew.y); - Skew.x = glm::dot(Row[1], Row[2]); - Row[2] = detail::combine(Row[2], Row[1], static_cast<T>(1), -Skew.x); - - // Next, get Z scale and normalize 3rd row. - Scale.z = length(Row[2]); - Row[2] = detail::scale(Row[2], static_cast<T>(1)); - Skew.y /= Scale.z; - Skew.x /= Scale.z; - - // At this point, the matrix (in rows[]) is orthonormal. - // Check for a coordinate system flip. If the determinant - // is -1, then negate the matrix and the scaling factors. - Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3); - if(dot(Row[0], Pdum3) < 0) - { - for(length_t i = 0; i < 3; i++) - { - Scale[i] *= static_cast<T>(-1); - Row[i] *= static_cast<T>(-1); - } - } - - // Now, get the rotations out, as described in the gem. - - // FIXME - Add the ability to return either quaternions (which are - // easier to recompose with) or Euler angles (rx, ry, rz), which - // are easier for authors to deal with. The latter will only be useful - // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I - // will leave the Euler angle code here for now. - - // ret.rotateY = asin(-Row[0][2]); - // if (cos(ret.rotateY) != 0) { - // ret.rotateX = atan2(Row[1][2], Row[2][2]); - // ret.rotateZ = atan2(Row[0][1], Row[0][0]); - // } else { - // ret.rotateX = atan2(-Row[2][0], Row[1][1]); - // ret.rotateZ = 0; - // } - - int i, j, k = 0; - float root, trace = Row[0].x + Row[1].y + Row[2].z; - if(trace > static_cast<T>(0)) - { - root = sqrt(trace + static_cast<T>(1.0)); - Orientation.w = static_cast<T>(0.5) * root; - root = static_cast<T>(0.5) / root; - Orientation.x = root * (Row[1].z - Row[2].y); - Orientation.y = root * (Row[2].x - Row[0].z); - Orientation.z = root * (Row[0].y - Row[1].x); - } // End if > 0 - else - { - static int Next[3] = {1, 2, 0}; - i = 0; - if(Row[1].y > Row[0].x) i = 1; - if(Row[2].z > Row[i][i]) i = 2; - j = Next[i]; - k = Next[j]; - - root = sqrt(Row[i][i] - Row[j][j] - Row[k][k] + static_cast<T>(1.0)); - - Orientation[i] = static_cast<T>(0.5) * root; - root = static_cast<T>(0.5) / root; - Orientation[j] = root * (Row[i][j] + Row[j][i]); - Orientation[k] = root * (Row[i][k] + Row[k][i]); - Orientation.w = root * (Row[j][k] - Row[k][j]); - } // End if <= 0 - - return true; - } -}//namespace glm |