/***
*trans.h - definitions for computing transcendentals
*
* Copyright (c) 1991-1991, Microsoft Corporation. All rights reserved.
*
*Purpose: Define constants and macros that are used for computing
* transcendentals. Some of the definitions are machine dependent.
* Double is assumed to conform to the IEEE 754 std format.
*
*Revision History:
* 08-14-91 GDP written
* 10-29-91 GDP removed unused prototypes, added _frnd
* 01-20-92 GDP significant changes -- IEEE exc. support
* 03-27-92 GDP put IEEE definitions in fpieee.h
* 03-31-92 GDP add internal constants for _ctrlfp, _statfp
* 05-08-92 PLM added M68K switch
* 05-18-92 XY added exception macro under M68K switch
* 06-23-92 GDP added macro for negative zero
* 09-06-92 GDP include cruntime.h, calling convention macros
* 07-16-93 SRW ALPHA Merge
* 01-13-94 RDL Added #ifndef _LANGUAGE_ASSEMBLY for asm includes.
* 10-02-94 BWT PPC merge
*
*******************************************************************************/
#ifndef _INC_TRANS
#ifdef __cplusplus
extern "C" {
#endif
#ifndef _LANGUAGE_ASSEMBLY
#include <cruntime.h>
/*
* Conditional macro definition for function calling type and variable type
* qualifiers.
*/
#if ( (_MSC_VER >= 800) && (_M_IX86 >= 300) )
/*
* Definitions for MS C8-32 (386/486) compiler
*/
#define _CRTAPI1 __cdecl
#define _CRTAPI2 __cdecl
#elif ( _MSC_VER == 600 )
/*
* Definitions for old MS C6-386 compiler
*/
#define _CRTAPI1 _cdecl
#define _CRTAPI2 _cdecl
#define _CRTVAR1 _cdecl
#define _M_IX86 300
#else
/*
* Other compilers (e.g., MIPS)
*/
#define _CRTAPI1
#define _CRTAPI2
#define _CRTVAR1
#endif
#include <fpieee.h>
#define D_BIASM1 0x3fe /* off by one to compensate for the implied bit */
#ifdef B_END
/* big endian */
#define D_EXP(x) ((unsigned short *)&(x))
#define D_HI(x) ((unsigned long *)&(x))
#define D_LO(x) ((unsigned long *)&(x)+1)
#else
#define D_EXP(x) ((unsigned short *)&(x)+3)
#define D_HI(x) ((unsigned long *)&(x)+1)
#define D_LO(x) ((unsigned long *)&(x))
#endif
/* return the int representation of the exponent
* if x = .f * 2^n, 0.5<=f<1, return n (unbiased)
* e.g. INTEXP(3.0) == 2
*/
#define INTEXP(x) ((signed short)((*D_EXP(x) & 0x7ff0) >> 4) - D_BIASM1)
/* check for infinity, NAN */
#define D_ISINF(x) ((*D_HI(x) & 0x7fffffff) == 0x7ff00000 && *D_LO(x) == 0)
#define IS_D_SPECIAL(x) ((*D_EXP(x) & 0x7ff0) == 0x7ff0)
#define IS_D_NAN(x) (IS_D_SPECIAL(x) && !D_ISINF(x))
#ifdef _M_MRX000
#define IS_D_SNAN(x) ((*D_EXP(x) & 0x7ff8) == 0x7ff8)
#define IS_D_QNAN(x) ((*D_EXP(x) & 0x7ff8) == 0x7ff0 && \
(*D_HI(x) << 13 || *D_LO(x)))
#else
#define IS_D_QNAN(x) ((*D_EXP(x) & 0x7ff8) == 0x7ff8)
#define IS_D_SNAN(x) ((*D_EXP(x) & 0x7ff8) == 0x7ff0 && \
(*D_HI(x) << 13 || *D_LO(x)))
#endif
#define IS_D_DENORM(x) ((*D_EXP(x) & 0x7ff0) == 0 && \
(*D_HI(x) << 12 || *D_LO(x)))
#define IS_D_INF(x) (*D_HI(x) == 0x7ff00000 && *D_LO(x) == 0)
#define IS_D_MINF(x) (*D_HI(x) == 0xfff00000 && *D_LO(x) == 0)
#ifdef _M_MRX000
#define D_IND_HI 0x7ff7ffff
#define D_IND_LO 0xffffffff
#else
#define D_IND_HI 0xfff80000
#define D_IND_LO 0x0
#endif
typedef union {
long lng[2];
double dbl;
} _dbl;
extern _dbl _d_inf;
extern _dbl _d_ind;
extern _dbl _d_max;
extern _dbl _d_min;
extern _dbl _d_mzero;
#define D_INF (_d_inf.dbl)
#define D_IND (_d_ind.dbl)
#define D_MAX (_d_max.dbl)
#define D_MIN (_d_min.dbl)
#define D_MZERO (_d_mzero.dbl) /* minus zero */
/* min and max exponents for normalized numbers in the
* form: 0.xxxxx... * 2^exp (NOT 1.xxxx * 2^exp !)
*/
#define MAXEXP 1024
#define MINEXP -1021
#endif /* _LANGUAGE_ASSEMBLY */
#if defined(_M_IX86)
/* Control word for computation of transcendentals */
#define ICW 0x133f
#define IMCW 0xffff
#define IMCW_EM 0x003f /* interrupt Exception Masks */
#define IEM_INVALID 0x0001 /* invalid */
#define IEM_DENORMAL 0x0002 /* denormal */
#define IEM_ZERODIVIDE 0x0004 /* zero divide */
#define IEM_OVERFLOW 0x0008 /* overflow */
#define IEM_UNDERFLOW 0x0010 /* underflow */
#define IEM_INEXACT 0x0020 /* inexact (precision) */
#define IMCW_RC 0x0c00 /* Rounding Control */
#define IRC_CHOP 0x0c00 /* chop */
#define IRC_UP 0x0800 /* up */
#define IRC_DOWN 0x0400 /* down */
#define IRC_NEAR 0x0000 /* near */
#define ISW_INVALID 0x0001 /* invalid */
#define ISW_DENORMAL 0x0002 /* denormal */
#define ISW_ZERODIVIDE 0x0004 /* zero divide */
#define ISW_OVERFLOW 0x0008 /* overflow */
#define ISW_UNDERFLOW 0x0010 /* underflow */
#define ISW_INEXACT 0x0020 /* inexact (precision) */
#define IMCW_PC 0x0300 /* Precision Control */
#define IPC_24 0x0000 /* 24 bits */
#define IPC_53 0x0200 /* 53 bits */
#define IPC_64 0x0300 /* 64 bits */
#define IMCW_IC 0x1000 /* Infinity Control */
#define IIC_AFFINE 0x1000 /* affine */
#define IIC_PROJECTIVE 0x0000 /* projective */
#elif defined(_M_MRX000)
#define ICW 0x00000f80 /* Internal CW for transcendentals */
#define IMCW 0xffffff83 /* Internal CW Mask */
#define IMCW_EM 0x00000f80 /* interrupt Exception Masks */
#define IEM_INVALID 0x00000800 /* invalid */
#define IEM_ZERODIVIDE 0x00000400 /* zero divide */
#define IEM_OVERFLOW 0x00000200 /* overflow */
#define IEM_UNDERFLOW 0x00000100 /* underflow */
#define IEM_INEXACT 0x00000080 /* inexact (precision) */
#define IMCW_RC 0x00000003 /* Rounding Control */
#define IRC_CHOP 0x00000001 /* chop */
#define IRC_UP 0x00000002 /* up */
#define IRC_DOWN 0x00000003 /* down */
#define IRC_NEAR 0x00000000 /* near */
#define ISW_INVALID (1<<6) /* invalid */
#define ISW_ZERODIVIDE (1<<5) /* zero divide */
#define ISW_OVERFLOW (1<<4) /* overflow */
#define ISW_UNDERFLOW (1<<3) /* underflow */
#define ISW_INEXACT (1<<2) /* inexact (precision) */
#elif defined(_M_ALPHA)
//
// ICW is the Internal Control Word for transcendentals: all five exceptions
// are masked and round to nearest mode is set. IMCW is the mask: all bits
// are set, except for the ISW bits.
//
#define ICW (IEM_INEXACT | IEM_UNDERFLOW | IEM_OVERFLOW | IEM_ZERODIVIDE | IEM_INVALID | IRC_NEAR)
#define ISW (ISW_INEXACT | ISW_UNDERFLOW | ISW_OVERFLOW | ISW_ZERODIVIDE | ISW_INVALID)
#define IMCW (0xffffffff ^ ISW)
//
// The defines for the internal control word match the format of the Alpha
// AXP software FPCR except for the rounding mode which is obtained from the
// Alpha AXP hardware FPCR and shifted right 32 bits.
//
//
// Internal Exception Mask bits.
// Each bit _disables_ an exception (they are not _enable_ bits).
//
#define IMCW_EM 0x0000003e /* interrupt Exception Masks */
#define IEM_INEXACT 0x00000020 /* inexact (precision) */
#define IEM_UNDERFLOW 0x00000010 /* underflow */
#define IEM_OVERFLOW 0x00000008 /* overflow */
#define IEM_ZERODIVIDE 0x00000004 /* zero divide */
#define IEM_INVALID 0x00000002 /* invalid */
//
// Internal Rounding Control values.
//
#define IMCW_RC (0x3 << 26) /* Rounding Control */
#define IRC_CHOP (0x0 << 26) /* chop */
#define IRC_DOWN (0x1 << 26) /* down */
#define IRC_NEAR (0x2 << 26) /* near */
#define IRC_UP (0x3 << 26) /* up */
//
// Internal Status Word bits.
//
#define ISW_INEXACT 0x00200000 /* inexact (precision) */
#define ISW_UNDERFLOW 0x00100000 /* underflow */
#define ISW_OVERFLOW 0x00080000 /* overflow */
#define ISW_ZERODIVIDE 0x00040000 /* zero divide */
#define ISW_INVALID 0x00020000 /* invalid */
#elif defined(_M_PPC)
#define IMCW_EM 0x000000f8 /* Exception Enable Mask */
#define IEM_INVALID 0x00000080 /* invalid */
#define IEM_OVERFLOW 0x00000040 /* overflow */
#define IEM_UNDERFLOW 0x00000020 /* underflow */
#define IEM_ZERODIVIDE 0x00000010 /* zero divide */
#define IEM_INEXACT 0x00000008 /* inexact (precision) */
#define IMCW_RC 0x00000003 /* Rounding Control Mask */
#define IRC_NEAR 0x00000000 /* near */
#define IRC_CHOP 0x00000001 /* chop */
#define IRC_UP 0x00000002 /* up */
#define IRC_DOWN 0x00000003 /* down */
#define IMCW_SW 0x3E000000 /* Status Mask */
#define ISW_INVALID 0x20000000 /* invalid summary */
#define ISW_OVERFLOW 0x10000000 /* overflow */
#define ISW_UNDERFLOW 0x08000000 /* underflow */
#define ISW_ZERODIVIDE 0x04000000 /* zero divide */
#define ISW_INEXACT 0x02000000 /* inexact (precision) */
#define IMCW_VX 0x01F80100 /* Invalid Cause Mask */
#define IVX_SNAN 0x01000000 /* SNaN */
#define IVX_ISI 0x00800000 /* infinity - infinity */
#define IVX_IDI 0x00400000 /* infinity / infinity */
#define IVX_ZDZ 0x00200000 /* zero / zero */
#define IVX_IMZ 0x00100000 /* infinity * zero */
#define IVX_VC 0x00080000 /* inv flpt compare */
#define IVX_CVI 0x00000100 /* inv integer convert */
/* Internal CW for transcendentals */
#define ICW (IMCW_EM)
/* Internal CW Mask (non-status bits) */
#define IMCW (0xffffffff & (~(IMCW_SW|IMCW_VX)))
#endif
#ifndef _LANGUAGE_ASSEMBLY
#define RETURN(fpcw,result) return _rstorfp(fpcw),(result)
#define RETURN_INEXACT1(op,arg1,res,cw) \
if (cw & IEM_INEXACT) { \
_rstorfp(cw); \
return res; \
} \
else { \
return _except1(FP_P, op, arg1, res, cw); \
}
#define RETURN_INEXACT2(op,arg1,arg2,res,cw) \
if (cw & IEM_INEXACT) { \
_rstorfp(cw); \
return res; \
} \
else { \
return _except2(FP_P, op, arg1, arg2, res, cw); \
}
#ifdef _M_ALPHA
//
// Since fp32 is not compiled in IEEE exception mode perform Alpha NaN
// propagation in software to avoid hardware/kernel trap involvement.
//
extern double _nan2qnan(double);
#define _d_snan2(x,y) _nan2qnan(y)
#define _s2qnan(x) _nan2qnan(x)
#else
//handle NaN propagation
#define _d_snan2(x,y) ((x)+(y))
#define _s2qnan(x) ((x)+1.0)
#endif
#define _maskfp() _ctrlfp(ICW, IMCW)
#ifdef _ALPHA_
#define _rstorfp(cw) 0
#else
#define _rstorfp(cw) _ctrlfp(cw, IMCW)
#endif
#define ABS(x) ((x)<0 ? -(x) : (x) )
int _d_inttype(double);
#endif /* _LANGUAGE_ASSEMBLY */
#define _D_NOINT 0
#define _D_ODD 1
#define _D_EVEN 2
// IEEE exceptions
#define FP_O 0x01
#define FP_U 0x02
#define FP_Z 0x04
#define FP_I 0x08
#define FP_P 0x10
// An extra flag for matherr support
// Set together with FP_I from trig functions when the argument is too large
#define FP_TLOSS 0x20
#ifndef _LANGUAGE_ASSEMBLY
#ifdef B_END
#define SET_DBL(msw, lsw) msw, lsw
#else
#define SET_DBL(msw, lsw) lsw, msw
#endif
#endif /* _LANGUAGE_ASSEMBLY */
// special types
#define T_PINF 1
#define T_NINF 2
#define T_QNAN 3
#define T_SNAN 4
// exponent adjustment for IEEE overflow/underflow exceptions
// used before passing the result to the trap handler
#define IEEE_ADJUST 1536
// QNAN values
#define INT_NAN (~0)
#define QNAN_SQRT D_IND
#define QNAN_LOG D_IND
#define QNAN_LOG10 D_IND
#define QNAN_POW D_IND
#define QNAN_SINH D_IND
#define QNAN_COSH D_IND
#define QNAN_TANH D_IND
#define QNAN_SIN1 D_IND
#define QNAN_SIN2 D_IND
#define QNAN_COS1 D_IND
#define QNAN_COS2 D_IND
#define QNAN_TAN1 D_IND
#define QNAN_TAN2 D_IND
#define QNAN_ACOS D_IND
#define QNAN_ASIN D_IND
#define QNAN_ATAN2 D_IND
#define QNAN_CEIL D_IND
#define QNAN_FLOOR D_IND
#define QNAN_MODF D_IND
#define QNAN_LDEXP D_IND
#define QNAN_FMOD D_IND
#define QNAN_FREXP D_IND
/*
* Function prototypes
*/
#ifndef _LANGUAGE_ASSEMBLY
double _copysign(double x, double y);
double _set_exp(double x, int exp);
double _set_bexp(double x, int exp);
double _add_exp(double x, int exp);
double _frnd(double);
double _fsqrt(double);
/* Must have these declarations (or a suitable macro) or the C implementations
* of a great many FP functions fail badly when there is an exception */
#ifndef _except1
double _except1(int flags, int opcode, double arg, double res, unsigned int cw);
#endif
#ifndef _except2
double _except2(int flags, int opcode, double arg1, double arg2, double res, unsigned int cw);
#endif
int _sptype(double);
int _get_exp(double);
double _decomp(double, int *);
int _powhlp(double x, double y, double * result);
extern unsigned int _fpstatus;
double _frnd(double);
double _exphlp(double, int *);
double _handle_qnan1(unsigned int op, double arg, unsigned int cw);
double _handle_qnan2(unsigned int op,double arg1,double arg2,unsigned int cw);
unsigned int _clhwfp(void);
unsigned int _setfpcw(unsigned int);
int _errcode(unsigned int flags);
void _set_errno(int matherrtype);
int _handle_exc(unsigned int flags, double * presult, unsigned int cw);
unsigned int _clrfp(void);
unsigned int _ctrlfp(unsigned int,unsigned int);
unsigned int _statfp(void);
void _set_statfp(unsigned int);
#endif /* _LANGUAGE_ASSEMBLY */
#ifdef __cplusplus
}
#endif
#define _INC_TRANS
#endif /* _INC_TRANS */