1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
|
// TITLE("Alpha AXP Natural Logarithm")
//++
//
// Copyright (c) 1993, 1994 Digital Equipment Corporation
//
// Module Name:
//
// log.s
//
// Abstract:
//
// This module implements a high-performance Alpha AXP specific routine
// for IEEE double format natural logarithm.
//
// Author:
//
// Martha Jaffe
//
// Environment:
//
// User mode.
//
// Revision History:
//
// Thomas Van Baak (tvb) 7-Feb-1994
//
// Adapted for NT.
//
//--
#include "ksalpha.h"
//
// Define DPML exception record for NT.
//
.struct 0
ErErr: .space 4 // error code
ErCxt: .space 4 // context
ErPlat: .space 4 // platform
ErEnv: .space 4 // environment
ErRet: .space 4 // return value pointer
ErName: .space 4 // function name
ErType: .space 8 // flags and fill
ErVal: .space 8 // return value
ErArg0: .space 8 // arg 0
ErArg1: .space 8 // arg 1
ErArg2: .space 8 // arg 2
ErArg3: .space 8 // arg 3
DpmlExceptionLength:
//
// Define stack frame.
//
.struct 0
Temp: .space 8 // save argument
ExRec: .space DpmlExceptionLength // exception record
.space 0 // for 16-byte stack alignment
FrameLength:
//
// Define lower and upper 32-bit parts of 64-bit double.
//
#define LowPart 0x0
#define HighPart 0x4
SBTTL("Natural Log")
//++
//
// double
// log (
// IN double x
// )
//
// Routine Description:
//
// This function returns the natural log of the given double argument.
//
// Arguments:
//
// x (f16) - Supplies the argument value.
//
// Return Value:
//
// The double log result is returned as the function value in f0.
//
//--
NESTED_ENTRY(log, FrameLength, ra)
lda sp, -FrameLength(sp) // allocate stack frame
mov ra, t7 // save return address
PROLOGUE_END
stt f16, Temp(sp)
ldl t1, Temp + HighPart(sp)
lda t0, _log_table
ldah v0, 0x3fee(zero)
subl t1, v0, v0
ldt f1, 0(t0)
ldah t2, 3(zero)
cmpult v0, t2, v0
bne v0, 80f
sra t1, 20, v0
sra t1, 8, t2
cpyse f1, f16, f10
subl v0, 1, t4
lda t5, 0x7fe(zero)
lda t3, 0xfe0(zero)
cmpult t4, t5, t4
and t2, t3, t2
beq t4, 10f
lda t6, 0x3ff(zero)
subl v0, t6, t6
br zero, 70f
//
// abnormal x
//
10: ldah t5, -0x8000(zero)
ldah t4, 0x7ff0(zero)
and t1, t5, t5
and t1, t4, v0
beq t5, 50f
lda t6, logName
bne v0, 30f
ldah v0, 0x800(zero)
ldt f10, Two53
lda v0, 0x31(v0)
cpyse f10, f16, f0
subt f0, f10, f0
fbne f0, 20f
//
// call exception dispatcher log(zero)
//
stt f16, ExRec + ErArg0(sp)
stl t6, ExRec + ErName(sp)
stl v0, ExRec + ErErr(sp)
lda v0, ExRec(sp)
bsr ra, __dpml_exception
ldt f0, 0(v0)
br zero, done
//
// call exception dispatcher log(neg)
//
20: ldah ra, 0x800(zero)
stt f16, ExRec + ErArg0(sp)
lda t6, logName
stl t6, ExRec + ErName(sp)
lda ra, 0x30(ra)
stl ra, ExRec + ErErr(sp)
lda v0, ExRec(sp)
bsr ra, __dpml_exception
ldt f0, 0(v0)
br zero, done
//
// check for nan
//
30: stt f16, Temp(sp)
ldl ra, Temp(sp)
ldah v0, 0x10(zero)
ldl t2, Temp + HighPart(sp)
lda v0, -1(v0)
and t2, v0, v0
bis v0, ra, v0
and t2, t4, t6
cmpult zero, v0, v0
cmpeq t6, t4, t4
beq t4, 40f
and t4, v0, t4
bne t4, retarg
//
// call exception dispatcher log(neg)
//
40: ldah ra, 0x800(zero)
stt f16, ExRec + ErArg0(sp)
lda t6, logName
stl t6, ExRec + ErName(sp)
lda ra, 0x30(ra)
stl ra, ExRec + ErErr(sp)
lda v0, ExRec(sp)
bsr ra, __dpml_exception
ldt f16, 0(v0)
retarg: cpys f16, f16, f0
br zero, done
//
// check for denorm
//
50: ldah t4, 0x7ff0(zero)
and t1, t4, t1
bne t1, retarg
ldah t2, 0x800(zero)
ldt f10, Two53
lda t2, 0x31(t2)
lda ra, logName
cpyse f10, f16, f0
lda v0, ExRec(sp)
subt f0, f10, f11
fbne f11, 60f
//
// call exception dispatcher log(zero)
//
stt f16, ExRec + ErArg0(sp)
stl t2, ExRec + ErErr(sp)
stl ra, ExRec + ErName(sp)
bsr ra, __dpml_exception
ldt f0, 0(v0)
br zero, done
//
// fix up denorms
//
60: stt f11, Temp(sp)
cpyse f1, f11, f10
ldl t1, Temp + HighPart(sp)
lda t2, 0x832(zero)
sra t1, 8, t5
sra t1, 20, t1
and t5, t3, t3
subl t1, t2, t6
mov t3, t2
//
// rejoin normal path
//
70: addl t0, t2, t2
ldt f1, 0x98(t0) // load away from 1 coefs
ldt f16, 0xd8(t2) // LOG_F_TABLE_TWOP
ldt f0, 0xe0(t2)
stq t6, Temp(sp)
subt f10, f16, f10
ldt f16, Temp(sp)
ldt f12, 0x90(t0)
ldt f15, 0x88(t0) // POLY_ADDRESS_TWOP_AWAY
cvtqt f16, f16
ldt f17, 0xa0(t0)
mult f10, f0, f0
ldt f10, 0xa8(t0)
mult f0, f0, f11
mult f1, f0, f1
mult f10, f0, f10
mult f11, f11, f13
mult f11, f0, f14
addt f12, f1, f1
ldt f12, 0xd0(t0) // LOG2_LO_TWOP
mult f11, f15, f11
addt f17, f10, f10
ldt f15, 0xf0(t2)
ldt f17, 0xe8(t2)
mult f12, f16, f12
mult f13, f0, f13
mult f14, f1, f1
ldt f14, 0xc8(t0) // LOG2_HI_TWOP
addt f12, f15, f12
mult f13, f10, f10
addt f11, f1, f1
mult f16, f14, f14
addt f12, f0, f0
addt f1, f10, f1
addt f14, f17, f14
addt f0, f1, f0
addt f0, f14, f0
br zero, done
//
// near one case
//
80: subt f16, f1, f1
ldt f10, 0x18(t0) // load near 1 poly coefs
ldt f14, 0x28(t0)
ldt f21, 0x20(t0)
ldt f16, Two29
ldt f19, 0x38(t0) // LOG2_LO_ONEP
mult f1, f1, f15
mult f1, f10, f10
mult f1, f14, f14
cpys f1, f16, f18
ldt f16, 0x10(t0)
cpys f1, f1, f20
mult f1, f19, f19
mult f15, f1, f13
mult f15, f15, f11
addt f10, f16, f10
addt f14, f21, f14
ldt f16, 0x30(t0) // LOG2_HI_ONEP
ldt f21, 0x48(t0)
addt f20, f18, f20
mult f15, f13, f17
mult f11, f1, f12
mult f13, f11, f0
mult f11, f15, f15
mult f13, f10, f10
ldt f13, 0x58(t0)
addt f19, f16, f16
ldt f19, 0x40(t0) // LOG_F_TABLE_ONEP
mult f1, f21, f21
mult f17, f14, f14
mult f12, f11, f12
ldt f17, 0x50(t0)
mult f15, f1, f15
mult f1, f13, f13
subt f20, f18, f18
mult f0, f16, f0
addt f21, f19, f19
ldt f21, Half
addt f10, f14, f10
mult f15, f11, f11
addt f13, f17, f13
subt f1, f18, f20
addt f1, f18, f16
mult f12, f19, f12
addt f10, f0, f0
mult f18, f18, f18
mult f11, f13, f11
mult f16, f20, f16
addt f0, f12, f0
mult f18, f21, f18
mult f16, f21, f16
addt f0, f11, f0
subt f1, f18, f1
subt f0, f16, f0
addt f0, f1, f0
//
// Return with result in f0.
//
done:
lda sp, FrameLength(sp) // deallocate stack frame
ret zero, (t7) // return through saved ra in t7
.end log
.align 3
.rdata
//
// Define floating point constants.
//
Half: .double 0.5
One: .double 1.0
Two29: .double 536870912.0 // 2^29
Two53: .double 9007199254740992.0 // 2^53
//
// Function name for dpml_exception.
//
logName:
.ascii "log\0"
//
// log data table
//
.align 3
_log_table:
// 1.0 in working precision
.double 1.0000000000000000e+000
// poly coeffs near 1
.double -5.0000000000000000e-001
.double 3.3333333333333581e-001
.double -2.5000000000000555e-001
.double 1.9999999999257809e-001
.double -1.6666666665510016e-001
.double 1.4285715095862653e-001
.double -1.2500001025849336e-001
.double 1.1110711557933650e-001
.double -9.9995589399147614e-002
.double 9.1816350893696136e-002
.double -8.4241019625172817e-002
// poly coeffs quotient, near 1
.double 8.3333333333333953e-002
.double 1.2499999999536091e-002
.double 2.2321429837356640e-003
.double 4.3401216971065997e-004
.double 8.9664418510783172e-005
// poly coeffs away from 1
.double -5.0000000000000000e-001
.double 3.3333333331462339e-001
.double -2.4999999997583292e-001
.double 2.0000326978572527e-001
.double -1.6666993645814179e-001
// poly coeffs quotient, away from 1
.double 8.3333333333334911e-002
.double 1.2499999967659360e-002
.double 2.2323547997135616e-003
// log of 2 in hi and lo parts
.double 6.9314718055989033e-001
.double 5.4979230187083712e-014
// Table of F, 1/F, and hi and lo log of F; (128 * 4 entries)
.double 1.0039062500000000e+000
.double 9.9610894941634243e-001
.double 3.8986404156275967e-003
.double 2.9726346900928951e-014
.double 1.0117187500000000e+000
.double 9.8841698841698844e-001
.double 1.1650617220084314e-002
.double -1.0903974971735932e-013
.double 1.0195312500000000e+000
.double 9.8084291187739459e-001
.double 1.9342962843211353e-002
.double -8.0418538505225864e-014
.double 1.0273437500000000e+000
.double 9.7338403041825095e-001
.double 2.6976587698300136e-002
.double -9.8060505168431766e-014
.double 1.0351562500000000e+000
.double 9.6603773584905661e-001
.double 3.4552381506728125e-002
.double -6.8391397423287774e-014
.double 1.0429687500000000e+000
.double 9.5880149812734083e-001
.double 4.2071213920735318e-002
.double -4.8263140005511282e-014
.double 1.0507812500000000e+000
.double 9.5167286245353155e-001
.double 4.9533935122326511e-002
.double -4.9880309107981426e-014
.double 1.0585937500000000e+000
.double 9.4464944649446492e-001
.double 5.6941376400118315e-002
.double 2.0109399435564958e-014
.double 1.0664062500000000e+000
.double 9.3772893772893773e-001
.double 6.4294350705495162e-002
.double -9.7905185119902161e-014
.double 1.0742187500000000e+000
.double 9.3090909090909091e-001
.double 7.1593653186937445e-002
.double 7.1373082253431780e-014
.double 1.0820312500000000e+000
.double 9.2418772563176899e-001
.double 7.8840061707751374e-002
.double 2.4650189061766119e-014
.double 1.0898437500000000e+000
.double 9.1756272401433692e-001
.double 8.6034337341743594e-002
.double 5.9559229876256426e-014
.double 1.0976562500000000e+000
.double 9.1103202846975084e-001
.double 9.3177224854116503e-002
.double 6.6787085171628983e-014
.double 1.1054687500000000e+000
.double 9.0459363957597172e-001
.double 1.0026945316371894e-001
.double -4.3786376170783979e-014
.double 1.1132812500000000e+000
.double 8.9824561403508774e-001
.double 1.0731173578915332e-001
.double -6.5266788027310712e-014
.double 1.1210937500000000e+000
.double 8.9198606271777003e-001
.double 1.1430477128010352e-001
.double -4.4889533522386993e-014
.double 1.1289062500000000e+000
.double 8.8581314878892736e-001
.double 1.2124924363297396e-001
.double -1.0427241278273008e-013
.double 1.1367187500000000e+000
.double 8.7972508591065290e-001
.double 1.2814582269197672e-001
.double -4.6680314039457961e-014
.double 1.1445312500000000e+000
.double 8.7372013651877134e-001
.double 1.3499516453748583e-001
.double 1.8996158041578768e-014
.double 1.1523437500000000e+000
.double 8.6779661016949150e-001
.double 1.4179791186029433e-001
.double -3.6984595066970968e-014
.double 1.1601562500000000e+000
.double 8.6195286195286192e-001
.double 1.4855469432313839e-001
.double -1.2491548980751600e-015
.double 1.1679687500000000e+000
.double 8.5618729096989965e-001
.double 1.5526612891108016e-001
.double 4.3792508292406054e-014
.double 1.1757812500000000e+000
.double 8.5049833887043191e-001
.double 1.6193282026938505e-001
.double -7.1793900192956773e-014
.double 1.1835937500000000e+000
.double 8.4488448844884489e-001
.double 1.6855536102980295e-001
.double 3.7143977541704719e-015
.double 1.1914062500000000e+000
.double 8.3934426229508197e-001
.double 1.7513433212775453e-001
.double 9.4615165806650815e-014
.double 1.1992187500000000e+000
.double 8.3387622149837137e-001
.double 1.8167030310769405e-001
.double -5.9375063333847015e-014
.double 1.2070312500000000e+000
.double 8.2847896440129454e-001
.double 1.8816383241824042e-001
.double -5.7430783932007560e-014
.double 1.2148437500000000e+000
.double 8.2315112540192925e-001
.double 1.9461546769957749e-001
.double 9.4165381457182504e-014
.double 1.2226562500000000e+000
.double 8.1789137380191690e-001
.double 2.0102574606062262e-001
.double -3.1881849375437737e-014
.double 1.2304687500000000e+000
.double 8.1269841269841270e-001
.double 2.0739519434596332e-001
.double 1.0726867577289733e-013
.double 1.2382812500000000e+000
.double 8.0757097791798105e-001
.double 2.1372432939779173e-001
.double -7.3595801864405143e-014
.double 1.2460937500000000e+000
.double 8.0250783699059558e-001
.double 2.2001365830533359e-001
.double -5.1496672341414078e-014
.double 1.2539062500000000e+000
.double 7.9750778816199375e-001
.double 2.2626367865041175e-001
.double 4.1641267302872263e-014
.double 1.2617187500000000e+000
.double 7.9256965944272451e-001
.double 2.3247487874300532e-001
.double 8.8745072979746316e-014
.double 1.2695312500000000e+000
.double 7.8769230769230769e-001
.double 2.3864773785021498e-001
.double -3.9970509095301341e-014
.double 1.2773437500000000e+000
.double 7.8287461773700306e-001
.double 2.4478272641772492e-001
.double -3.3999811083618331e-014
.double 1.2851562500000000e+000
.double 7.7811550151975684e-001
.double 2.5088030628580782e-001
.double 1.5973663463624904e-015
.double 1.2929687500000000e+000
.double 7.7341389728096677e-001
.double 2.5694093089759917e-001
.double -9.8748030159663917e-014
.double 1.3007812500000000e+000
.double 7.6876876876876876e-001
.double 2.6296504550077771e-001
.double 1.0364636459896663e-013
.double 1.3085937500000000e+000
.double 7.6417910447761195e-001
.double 2.6895308734560786e-001
.double -1.0389630784002988e-013
.double 1.3164062500000000e+000
.double 7.5964391691394662e-001
.double 2.7490548587275043e-001
.double 4.8816703646769986e-014
.double 1.3242187500000000e+000
.double 7.5516224188790559e-001
.double 2.8082266290084590e-001
.double 4.1886091378637011e-014
.double 1.3320312500000000e+000
.double 7.5073313782991202e-001
.double 2.8670503280386583e-001
.double 8.8481096040068212e-014
.double 1.3398437500000000e+000
.double 7.4635568513119532e-001
.double 2.9255300268641804e-001
.double -4.0599978860151284e-014
.double 1.3476562500000000e+000
.double 7.4202898550724639e-001
.double 2.9836697255177569e-001
.double 2.1592693741973491e-014
.double 1.3554687500000000e+000
.double 7.3775216138328525e-001
.double 3.0414733546740536e-001
.double -1.0863828679707913e-013
.double 1.3632812500000000e+000
.double 7.3352435530085958e-001
.double 3.0989447772276435e-001
.double 1.0033796982039214e-013
.double 1.3710937500000000e+000
.double 7.2934472934472938e-001
.double 3.1560877898641593e-001
.double -1.1259274624680829e-013
.double 1.3789062500000000e+000
.double 7.2521246458923516e-001
.double 3.2129061245382218e-001
.double -8.7885427699715446e-014
.double 1.3867187500000000e+000
.double 7.2112676056338032e-001
.double 3.2694034499581903e-001
.double 3.4288400126669462e-014
.double 1.3945312500000000e+000
.double 7.1708683473389356e-001
.double 3.3255833730004269e-001
.double 3.3906861336722287e-014
.double 1.4023437500000000e+000
.double 7.1309192200557103e-001
.double 3.3814494400871808e-001
.double -1.6869501228130390e-015
.double 1.4101562500000000e+000
.double 7.0914127423822715e-001
.double 3.4370051385326406e-001
.double 5.4388883298990648e-014
.double 1.4179687500000000e+000
.double 7.0523415977961434e-001
.double 3.4922538978526063e-001
.double 2.7672711265736626e-014
.double 1.4257812500000000e+000
.double 7.0136986301369864e-001
.double 3.5471990910286877e-001
.double 6.0259386391812782e-014
.double 1.4335937500000000e+000
.double 6.9754768392370570e-001
.double 3.6018440357497639e-001
.double 3.1410128435793507e-014
.double 1.4414062500000000e+000
.double 6.9376693766937669e-001
.double 3.6561919956102429e-001
.double -5.9577094649293112e-014
.double 1.4492187500000000e+000
.double 6.9002695417789761e-001
.double 3.7102461812787624e-001
.double -3.5739377400104385e-015
.double 1.4570312500000000e+000
.double 6.8632707774798929e-001
.double 3.7640097516418791e-001
.double 6.5153983564591272e-014
.double 1.4648437500000000e+000
.double 6.8266666666666664e-001
.double 3.8174858149091051e-001
.double -6.2170323645733908e-014
.double 1.4726562500000000e+000
.double 6.7904509283819625e-001
.double 3.8706774296838375e-001
.double 6.4533411753084866e-014
.double 1.4804687500000000e+000
.double 6.7546174142480209e-001
.double 3.9235876060297414e-001
.double -1.1027121477530621e-013
.double 1.4882812500000000e+000
.double 6.7191601049868765e-001
.double 3.9762193064711937e-001
.double 1.9118699266850969e-014
.double 1.4960937500000000e+000
.double 6.6840731070496084e-001
.double 4.0285754470119173e-001
.double -1.0821299887954718e-013
.double 1.5039062500000000e+000
.double 6.6493506493506493e-001
.double 4.0806588980831293e-001
.double -9.1183133506522949e-014
.double 1.5117187500000000e+000
.double 6.6149870801033595e-001
.double 4.1324724855030581e-001
.double -8.6481461319862886e-014
.double 1.5195312500000000e+000
.double 6.5809768637532129e-001
.double 4.1840189913887116e-001
.double 1.2659153984938316e-014
.double 1.5273437500000000e+000
.double 6.5473145780051156e-001
.double 4.2353011550585506e-001
.double -5.1769120694201545e-014
.double 1.5351562500000000e+000
.double 6.5139949109414763e-001
.double 4.2863216738965093e-001
.double 4.7829207034065312e-014
.double 1.5429687500000000e+000
.double 6.4810126582278482e-001
.double 4.3370832042160146e-001
.double -4.2063037733589860e-014
.double 1.5507812500000000e+000
.double 6.4483627204030225e-001
.double 4.3875883620762579e-001
.double 2.1468971783400094e-015
.double 1.5585937500000000e+000
.double 6.4160401002506262e-001
.double 4.4378397241030143e-001
.double -4.4932834403337654e-016
.double 1.5664062500000000e+000
.double 6.3840399002493764e-001
.double 4.4878398282708076e-001
.double -7.4052432293450566e-014
.double 1.5742187500000000e+000
.double 6.3523573200992556e-001
.double 4.5375911746714337e-001
.double -2.2862495308664916e-014
.double 1.5820312500000000e+000
.double 6.3209876543209875e-001
.double 4.5870962262688408e-001
.double 9.2581114645991212e-014
.double 1.5898437500000000e+000
.double 6.2899262899262898e-001
.double 4.6363574096312732e-001
.double -9.4805444680453647e-014
.double 1.5976562500000000e+000
.double 6.2591687041564792e-001
.double 4.6853771156315815e-001
.double 8.1115771640052352e-014
.double 1.6054687500000000e+000
.double 6.2287104622871048e-001
.double 4.7341577001657242e-001
.double 9.9707744046996850e-014
.double 1.6132812500000000e+000
.double 6.1985472154963683e-001
.double 4.7827014848144245e-001
.double 2.7832864616306362e-014
.double 1.6210937500000000e+000
.double 6.1686746987951813e-001
.double 4.8310107575116490e-001
.double -2.9076236446386640e-014
.double 1.6289062500000000e+000
.double 6.1390887290167862e-001
.double 4.8790877731926230e-001
.double -2.3325742005188250e-014
.double 1.6367187500000000e+000
.double 6.1097852028639621e-001
.double 4.9269347544259290e-001
.double -1.7642921490304046e-014
.double 1.6445312500000000e+000
.double 6.0807600950118768e-001
.double 4.9745538920274157e-001
.double 7.7370898042138569e-014
.double 1.6523437500000000e+000
.double 6.0520094562647753e-001
.double 5.0219473456672858e-001
.double -1.3090194780543625e-014
.double 1.6601562500000000e+000
.double 6.0235294117647054e-001
.double 5.0691172444476251e-001
.double 9.1841537361323107e-014
.double 1.6679687500000000e+000
.double 5.9953161592505855e-001
.double 5.1160656874913002e-001
.double -6.7941049953303914e-014
.double 1.6757812500000000e+000
.double 5.9673659673659674e-001
.double 5.1627947444853817e-001
.double -8.3670880082996502e-014
.double 1.6835937500000000e+000
.double 5.9396751740139209e-001
.double 5.2093064562427571e-001
.double -9.0399770141535103e-014
.double 1.6914062500000000e+000
.double 5.9122401847575057e-001
.double 5.2556028352296380e-001
.double -3.6428968707830412e-014
.double 1.6992187500000000e+000
.double 5.8850574712643677e-001
.double 5.3016858660907928e-001
.double 4.2333597202652293e-014
.double 1.7070312500000000e+000
.double 5.8581235697940504e-001
.double 5.3475575061611380e-001
.double -8.6125310374957207e-014
.double 1.7148437500000000e+000
.double 5.8314350797266512e-001
.double 5.3932196859568649e-001
.double -7.7610404204187166e-014
.double 1.7226562500000000e+000
.double 5.8049886621315194e-001
.double 5.4386743096733881e-001
.double -5.5287539987057404e-014
.double 1.7304687500000000e+000
.double 5.7787810383747173e-001
.double 5.4839232556560091e-001
.double -2.7750502668562431e-014
.double 1.7382812500000000e+000
.double 5.7528089887640455e-001
.double 5.5289683768660325e-001
.double 7.4488995702366880e-014
.double 1.7460937500000000e+000
.double 5.7270693512304249e-001
.double 5.5738115013400602e-001
.double 3.3666963248598655e-016
.double 1.7539062500000000e+000
.double 5.7015590200445432e-001
.double 5.6184544326265495e-001
.double 3.6864628681746405e-014
.double 1.7617187500000000e+000
.double 5.6762749445676275e-001
.double 5.6628989502314653e-001
.double -3.0655228485481327e-014
.double 1.7695312500000000e+000
.double 5.6512141280353201e-001
.double 5.7071468100343736e-001
.double 3.4181893084806535e-014
.double 1.7773437500000000e+000
.double 5.6263736263736264e-001
.double 5.7511997447136309e-001
.double 2.4846950587975989e-014
.double 1.7851562500000000e+000
.double 5.6017505470459517e-001
.double 5.7950594641465614e-001
.double -1.3912911733001039e-014
.double 1.7929687500000000e+000
.double 5.5773420479302838e-001
.double 5.8387276558096346e-001
.double 1.9219300209816174e-014
.double 1.8007812500000000e+000
.double 5.5531453362255967e-001
.double 5.8822059851718222e-001
.double -9.6181860936898864e-014
.double 1.8085937500000000e+000
.double 5.5291576673866094e-001
.double 5.9254960960674907e-001
.double -7.7473812531053051e-014
.double 1.8164062500000000e+000
.double 5.5053763440860215e-001
.double 5.9685996110783890e-001
.double -4.5062309859097483e-014
.double 1.8242187500000000e+000
.double 5.4817987152034264e-001
.double 6.0115181318928990e-001
.double 4.4939791960264390e-014
.double 1.8320312500000000e+000
.double 5.4584221748400852e-001
.double 6.0542532396675597e-001
.double -3.9078848156752539e-014
.double 1.8398437500000000e+000
.double 5.4352441613588109e-001
.double 6.0968064953681278e-001
.double 4.2493638957603774e-014
.double 1.8476562500000000e+000
.double 5.4122621564482032e-001
.double 6.1391794401242805e-001
.double -5.7559595156051101e-014
.double 1.8554687500000000e+000
.double 5.3894736842105262e-001
.double 6.1813735955502125e-001
.double 5.7485347680567445e-014
.double 1.8632812500000000e+000
.double 5.3668763102725370e-001
.double 6.2233904640879700e-001
.double -1.8261498866916553e-014
.double 1.8710937500000000e+000
.double 5.3444676409185798e-001
.double 6.2652315293144056e-001
.double -8.7803627974403551e-014
.double 1.8789062500000000e+000
.double 5.3222453222453225e-001
.double 6.3068982562617748e-001
.double 2.1224639414045291e-014
.double 1.8867187500000000e+000
.double 5.3002070393374745e-001
.double 6.3483920917292380e-001
.double 8.6410153425250818e-014
.double 1.8945312500000000e+000
.double 5.2783505154639176e-001
.double 6.3897144645784465e-001
.double 7.6071821668420202e-014
.double 1.9023437500000000e+000
.double 5.2566735112936347e-001
.double 6.4308667860314017e-001
.double -1.1285622521565641e-013
.double 1.9101562500000000e+000
.double 5.2351738241308798e-001
.double 6.4718504499523988e-001
.double 6.9672514647224776e-014
.double 1.9179687500000000e+000
.double 5.2138492871690423e-001
.double 6.5126668331504334e-001
.double -8.5234246813161544e-014
.double 1.9257812500000000e+000
.double 5.1926977687626774e-001
.double 6.5533172956315866e-001
.double -3.1028217233522746e-014
.double 1.9335937500000000e+000
.double 5.1717171717171717e-001
.double 6.5938031808923370e-001
.double -1.0587069463342906e-013
.double 1.9414062500000000e+000
.double 5.1509054325955739e-001
.double 6.6341258161696715e-001
.double 9.9105859809946792e-014
.double 1.9492187500000000e+000
.double 5.1302605210420837e-001
.double 6.6742865127184814e-001
.double 1.0805094338364667e-013
.double 1.9570312500000000e+000
.double 5.1097804391217561e-001
.double 6.7142865660525786e-001
.double 4.4466890378487691e-014
.double 1.9648437500000000e+000
.double 5.0894632206759438e-001
.double 6.7541272562016275e-001
.double 1.3985026783782165e-014
.double 1.9726562500000000e+000
.double 5.0693069306930694e-001
.double 6.7938098479589826e-001
.double -1.0090714198118343e-013
.double 1.9804687500000000e+000
.double 5.0493096646942803e-001
.double 6.8333355911158833e-001
.double 3.2359204011502443e-014
.double 1.9882812500000000e+000
.double 5.0294695481335949e-001
.double 6.8727057207092912e-001
.double 3.1147551503113092e-014
.double 1.9960937500000000e+000
.double 5.0097847358121328e-001
.double 6.9119214572424426e-001
.double -1.0229682936814195e-013
//
// End of table.
//
|