1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
|
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "applypatch/applypatch.h"
#include <errno.h>
#include <fcntl.h>
#include <libgen.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/statfs.h>
#include <sys/types.h>
#include <unistd.h>
#include <functional>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <android-base/strings.h>
#include <openssl/sha.h>
#include "bmlutils/bmlutils.h"
#include "mtdutils/mtdutils.h"
#include "edify/expr.h"
#include "otafault/ota_io.h"
#include "otautil/cache_location.h"
#include "otautil/print_sha1.h"
static int LoadPartitionContents(const std::string& filename, FileContents* file);
static size_t FileSink(const unsigned char* data, size_t len, int fd);
static int GenerateTarget(const FileContents& source_file, const std::unique_ptr<Value>& patch,
const std::string& target_filename,
const uint8_t target_sha1[SHA_DIGEST_LENGTH], const Value* bonus_data);
static bool mtd_partitions_scanned = false;
// Read a file into memory; store the file contents and associated metadata in *file.
// Return 0 on success.
int LoadFileContents(const char* filename, FileContents* file) {
// A special 'filename' beginning with "MTD:" or "EMMC:" means to
// load the contents of a partition.
if (strncmp(filename, "MTD:", 4) == 0 ||
strncmp(filename, "EMMC:", 5) == 0 ||
strncmp(filename, "BML:", 4) == 0) {
return LoadPartitionContents(filename, file);
}
struct stat sb;
if (stat(filename, &sb) == -1) {
printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
return -1;
}
std::vector<unsigned char> data(sb.st_size);
unique_file f(ota_fopen(filename, "rb"));
if (!f) {
printf("failed to open \"%s\": %s\n", filename, strerror(errno));
return -1;
}
size_t bytes_read = ota_fread(data.data(), 1, data.size(), f.get());
if (bytes_read != data.size()) {
printf("short read of \"%s\" (%zu bytes of %zu)\n", filename, bytes_read, data.size());
return -1;
}
file->data = std::move(data);
SHA1(file->data.data(), file->data.size(), file->sha1);
return 0;
}
// Load the contents of an EMMC partition into the provided
// FileContents. filename should be a string of the form
// "EMMC:<partition_device>:...". The smallest size_n bytes for
// which that prefix of the partition contents has the corresponding
// sha1 hash will be loaded. It is acceptable for a size value to be
// repeated with different sha1s. Will return 0 on success.
//
// This complexity is needed because if an OTA installation is
// interrupted, the partition might contain either the source or the
// target data, which might be of different lengths. We need to know
// the length in order to read from a partition (there is no
// "end-of-file" marker), so the caller must specify the possible
// lengths and the hash of the data, and we'll do the load expecting
// to find one of those hashes.
enum PartitionType { MTD, EMMC };
static int LoadPartitionContents(const std::string& filename, FileContents* file) {
std::vector<std::string> pieces = android::base::Split(filename, ":");
if (pieces.size() < 4 || pieces.size() % 2 != 0) {
printf("LoadPartitionContents called with bad filename \"%s\"\n", filename.c_str());
return -1;
}
enum PartitionType type;
if (pieces[0] == "MTD") {
type = MTD;
} else if (pieces[0] == "EMMC") {
type = EMMC;
} else if (pieces[0] == "BML") {
type = EMMC;
} else {
printf("LoadPartitionContents called with bad filename (%s)\n", filename.c_str());
return -1;
}
size_t pair_count = (pieces.size() - 2) / 2; // # of (size, sha1) pairs in filename
std::vector<std::pair<size_t, std::string>> pairs;
for (size_t i = 0; i < pair_count; ++i) {
size_t size;
if (!android::base::ParseUint(pieces[i * 2 + 2], &size) || size == 0) {
printf("LoadPartitionContents called with bad size \"%s\"\n", pieces[i * 2 + 2].c_str());
return -1;
}
pairs.push_back({ size, pieces[i * 2 + 3] });
}
// Sort the pairs array so that they are in order of increasing size.
std::sort(pairs.begin(), pairs.end());
const char* partition = pieces[1].c_str();
unique_file dev(ota_fopen(partition, "rb"));
if (!dev) {
printf("failed to open emmc partition \"%s\": %s\n", partition, strerror(errno));
return -1;
}
SHA_CTX sha_ctx;
SHA1_Init(&sha_ctx);
// Allocate enough memory to hold the largest size.
std::vector<unsigned char> buffer(pairs[pair_count - 1].first);
unsigned char* buffer_ptr = buffer.data();
size_t buffer_size = 0; // # bytes read so far
bool found = false;
for (const auto& pair : pairs) {
size_t current_size = pair.first;
const std::string& current_sha1 = pair.second;
// Read enough additional bytes to get us up to the next size. (Again,
// we're trying the possibilities in order of increasing size).
size_t next = current_size - buffer_size;
if (next > 0) {
size_t read = ota_fread(buffer_ptr, 1, next, dev.get());
if (next != read) {
printf("short read (%zu bytes of %zu) for partition \"%s\"\n", read, next, partition);
return -1;
}
SHA1_Update(&sha_ctx, buffer_ptr, read);
buffer_size += read;
buffer_ptr += read;
}
if (pieces[0] == "BML") {
if (strcmp(partition, "boot") == 0) {
partition = BOARD_BML_BOOT;
} else if (strcmp(partition, "recovery") == 0) {
partition = BOARD_BML_RECOVERY;
}
}
// Duplicate the SHA context and finalize the duplicate so we can
// check it against this pair's expected hash.
SHA_CTX temp_ctx;
memcpy(&temp_ctx, &sha_ctx, sizeof(SHA_CTX));
uint8_t sha_so_far[SHA_DIGEST_LENGTH];
SHA1_Final(sha_so_far, &temp_ctx);
uint8_t parsed_sha[SHA_DIGEST_LENGTH];
if (ParseSha1(current_sha1.c_str(), parsed_sha) != 0) {
printf("failed to parse SHA-1 %s in %s\n", current_sha1.c_str(), filename.c_str());
return -1;
}
if (memcmp(sha_so_far, parsed_sha, SHA_DIGEST_LENGTH) == 0) {
// We have a match. Stop reading the partition; we'll return the data we've read so far.
printf("partition read matched size %zu SHA-1 %s\n", current_size, current_sha1.c_str());
found = true;
break;
}
}
if (!found) {
// Ran off the end of the list of (size, sha1) pairs without finding a match.
printf("contents of partition \"%s\" didn't match %s\n", partition, filename.c_str());
return -1;
}
SHA1_Final(file->sha1, &sha_ctx);
buffer.resize(buffer_size);
file->data = std::move(buffer);
return 0;
}
// Save the contents of the given FileContents object under the given
// filename. Return 0 on success.
int SaveFileContents(const char* filename, const FileContents* file) {
unique_fd fd(ota_open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_SYNC, S_IRUSR | S_IWUSR));
if (fd == -1) {
printf("failed to open \"%s\" for write: %s\n", filename, strerror(errno));
return -1;
}
size_t bytes_written = FileSink(file->data.data(), file->data.size(), fd);
if (bytes_written != file->data.size()) {
printf("short write of \"%s\" (%zd bytes of %zu): %s\n", filename, bytes_written,
file->data.size(), strerror(errno));
return -1;
}
if (ota_fsync(fd) != 0) {
printf("fsync of \"%s\" failed: %s\n", filename, strerror(errno));
return -1;
}
if (ota_close(fd) != 0) {
printf("close of \"%s\" failed: %s\n", filename, strerror(errno));
return -1;
}
return 0;
}
// Write a memory buffer to 'target' partition, a string of the form
// "EMMC:<partition_device>[:...]". The target name
// might contain multiple colons, but WriteToPartition() only uses the first
// two and ignores the rest. Return 0 on success.
int WriteToPartition(const unsigned char* data, size_t len, const std::string& target) {
std::string copy(target);
std::vector<std::string> pieces = android::base::Split(copy, ":");
if (pieces.size() < 2) {
printf("WriteToPartition called with bad target (%s)\n", target.c_str());
return -1;
}
enum PartitionType type;
if (pieces[0] == "MTD") {
type = MTD;
} else if (pieces[0] == "EMMC") {
type = EMMC;
} else if (pieces[0] == "BML") {
type = EMMC;
} else {
printf("WriteToPartition called with bad target (%s)\n", target.c_str());
return -1;
}
const char* partition = pieces[1].c_str();
if (pieces[0] == "BML") {
if (strcmp(partition, "boot") == 0) {
partition = BOARD_BML_BOOT;
} else if (strcmp(partition, "recovery") == 0) {
partition = BOARD_BML_RECOVERY;
}
int bmlpartition = open(partition, O_RDWR | O_LARGEFILE);
if (bmlpartition < 0)
return -1;
if (ioctl(bmlpartition, BML_UNLOCK_ALL, 0)) {
printf("failed to unlock BML partition: (%s)\n", partition);
return -1;
}
close(bmlpartition);
}
if (partition == NULL) {
printf("bad partition target name \"%s\"\n", target.c_str());
return -1;
}
switch (type) {
case MTD: {
if (!mtd_partitions_scanned) {
mtd_scan_partitions();
mtd_partitions_scanned = true;
}
const MtdPartition* mtd = mtd_find_partition_by_name(partition);
if (mtd == NULL) {
printf("mtd partition \"%s\" not found for writing\n", partition);
return -1;
}
MtdWriteContext* ctx = mtd_write_partition(mtd);
if (ctx == NULL) {
printf("failed to init mtd partition \"%s\" for writing\n", partition);
return -1;
}
size_t written = mtd_write_data(ctx, reinterpret_cast<const char*>(data), len);
if (written != len) {
printf("only wrote %zu of %zu bytes to MTD %s\n", written, len, partition);
mtd_write_close(ctx);
return -1;
}
if (mtd_erase_blocks(ctx, -1) < 0) {
printf("error finishing mtd write of %s\n", partition);
mtd_write_close(ctx);
return -1;
}
if (mtd_write_close(ctx)) {
printf("error closing mtd write of %s\n", partition);
return -1;
}
break;
}
case EMMC: {
size_t start = 0;
bool success = false;
unique_fd fd(ota_open(partition, O_RDWR | O_SYNC));
if (fd < 0) {
printf("failed to open %s: %s\n", partition, strerror(errno));
return -1;
}
for (size_t attempt = 0; attempt < 2; ++attempt) {
if (TEMP_FAILURE_RETRY(lseek(fd, start, SEEK_SET)) == -1) {
printf("failed seek on %s: %s\n", partition, strerror(errno));
return -1;
}
while (start < len) {
size_t to_write = len - start;
if (to_write > 1<<20) to_write = 1<<20;
ssize_t written = TEMP_FAILURE_RETRY(ota_write(fd, data+start, to_write));
if (written == -1) {
printf("failed write writing to %s: %s\n", partition, strerror(errno));
return -1;
}
start += written;
}
if (ota_fsync(fd) != 0) {
printf("failed to sync to %s (%s)\n", partition, strerror(errno));
return -1;
}
if (ota_close(fd) != 0) {
printf("failed to close %s (%s)\n", partition, strerror(errno));
return -1;
}
unique_fd fd(ota_open(partition, O_RDONLY));
if (fd < 0) {
printf("failed to reopen %s for verify (%s)\n", partition, strerror(errno));
return -1;
}
// Drop caches so our subsequent verification read
// won't just be reading the cache.
sync();
unique_fd dc(ota_open("/proc/sys/vm/drop_caches", O_WRONLY));
if (TEMP_FAILURE_RETRY(ota_write(dc, "3\n", 2)) == -1) {
printf("write to /proc/sys/vm/drop_caches failed: %s\n", strerror(errno));
} else {
printf(" caches dropped\n");
}
ota_close(dc);
sleep(1);
// verify
if (TEMP_FAILURE_RETRY(lseek(fd, 0, SEEK_SET)) == -1) {
printf("failed to seek back to beginning of %s: %s\n",
partition, strerror(errno));
return -1;
}
unsigned char buffer[4096];
start = len;
for (size_t p = 0; p < len; p += sizeof(buffer)) {
size_t to_read = len - p;
if (to_read > sizeof(buffer)) {
to_read = sizeof(buffer);
}
size_t so_far = 0;
while (so_far < to_read) {
ssize_t read_count =
TEMP_FAILURE_RETRY(ota_read(fd, buffer+so_far, to_read-so_far));
if (read_count == -1) {
printf("verify read error %s at %zu: %s\n",
partition, p, strerror(errno));
return -1;
}
if (static_cast<size_t>(read_count) < to_read) {
printf("short verify read %s at %zu: %zd %zu %s\n",
partition, p, read_count, to_read, strerror(errno));
}
so_far += read_count;
}
if (memcmp(buffer, data+p, to_read) != 0) {
printf("verification failed starting at %zu\n", p);
start = p;
break;
}
}
if (start == len) {
printf("verification read succeeded (attempt %zu)\n", attempt+1);
success = true;
break;
}
}
if (!success) {
printf("failed to verify after all attempts\n");
return -1;
}
if (ota_close(fd) != 0) {
printf("error closing %s (%s)\n", partition, strerror(errno));
return -1;
}
sync();
break;
}
}
return 0;
}
// Take a string 'str' of 40 hex digits and parse it into the 20
// byte array 'digest'. 'str' may contain only the digest or be of
// the form "<digest>:<anything>". Return 0 on success, -1 on any
// error.
int ParseSha1(const char* str, uint8_t* digest) {
const char* ps = str;
uint8_t* pd = digest;
for (int i = 0; i < SHA_DIGEST_LENGTH * 2; ++i, ++ps) {
int digit;
if (*ps >= '0' && *ps <= '9') {
digit = *ps - '0';
} else if (*ps >= 'a' && *ps <= 'f') {
digit = *ps - 'a' + 10;
} else if (*ps >= 'A' && *ps <= 'F') {
digit = *ps - 'A' + 10;
} else {
return -1;
}
if (i % 2 == 0) {
*pd = digit << 4;
} else {
*pd |= digit;
++pd;
}
}
if (*ps != '\0') return -1;
return 0;
}
// Search an array of sha1 strings for one matching the given sha1.
// Return the index of the match on success, or -1 if no match is
// found.
static int FindMatchingPatch(uint8_t* sha1, const std::vector<std::string>& patch_sha1_str) {
for (size_t i = 0; i < patch_sha1_str.size(); ++i) {
uint8_t patch_sha1[SHA_DIGEST_LENGTH];
if (ParseSha1(patch_sha1_str[i].c_str(), patch_sha1) == 0 &&
memcmp(patch_sha1, sha1, SHA_DIGEST_LENGTH) == 0) {
return i;
}
}
return -1;
}
// Returns 0 if the contents of the file (argv[2]) or the cached file
// match any of the sha1's on the command line (argv[3:]). Returns
// nonzero otherwise.
int applypatch_check(const char* filename, const std::vector<std::string>& patch_sha1_str) {
FileContents file;
// It's okay to specify no sha1s; the check will pass if the
// LoadFileContents is successful. (Useful for reading
// partitions, where the filename encodes the sha1s; no need to
// check them twice.)
if (LoadFileContents(filename, &file) != 0 ||
(!patch_sha1_str.empty() && FindMatchingPatch(file.sha1, patch_sha1_str) < 0)) {
printf("file \"%s\" doesn't have any of expected sha1 sums; checking cache\n", filename);
// If the source file is missing or corrupted, it might be because we were killed in the middle
// of patching it. A copy of it should have been made in cache_temp_source. If that file
// exists and matches the sha1 we're looking for, the check still passes.
if (LoadFileContents(CacheLocation::location().cache_temp_source().c_str(), &file) != 0) {
printf("failed to load cache file\n");
return 1;
}
if (FindMatchingPatch(file.sha1, patch_sha1_str) < 0) {
printf("cache bits don't match any sha1 for \"%s\"\n", filename);
return 1;
}
}
return 0;
}
int ShowLicenses() {
ShowBSDiffLicense();
return 0;
}
static size_t FileSink(const unsigned char* data, size_t len, int fd) {
size_t done = 0;
while (done < len) {
ssize_t wrote = TEMP_FAILURE_RETRY(ota_write(fd, data + done, len - done));
if (wrote == -1) {
printf("error writing %zd bytes: %s\n", (len - done), strerror(errno));
return done;
}
done += wrote;
}
return done;
}
// Return the amount of free space (in bytes) on the filesystem
// containing filename. filename must exist. Return -1 on error.
size_t FreeSpaceForFile(const char* filename) {
struct statfs sf;
if (statfs(filename, &sf) != 0) {
printf("failed to statfs %s: %s\n", filename, strerror(errno));
return -1;
}
return sf.f_bsize * sf.f_bavail;
}
int CacheSizeCheck(size_t bytes) {
if (MakeFreeSpaceOnCache(bytes) < 0) {
printf("unable to make %zu bytes available on /cache\n", bytes);
return 1;
}
return 0;
}
// This function applies binary patches to EMMC target files in a way that is safe (the original
// file is not touched until we have the desired replacement for it) and idempotent (it's okay to
// run this program multiple times).
//
// - If the SHA-1 hash of <target_filename> is <target_sha1_string>, does nothing and exits
// successfully.
//
// - Otherwise, if the SHA-1 hash of <source_filename> is one of the entries in <patch_sha1_str>,
// the corresponding patch from <patch_data> (which must be a VAL_BLOB) is applied to produce a
// new file (the type of patch is automatically detected from the blob data). If that new file
// has SHA-1 hash <target_sha1_str>, moves it to replace <target_filename>, and exits
// successfully. Note that if <source_filename> and <target_filename> are not the same,
// <source_filename> is NOT deleted on success. <target_filename> may be the string "-" to mean
// "the same as <source_filename>".
//
// - Otherwise, or if any error is encountered, exits with non-zero status.
//
// <source_filename> must refer to an EMMC partition to read the source data. See the comments for
// the LoadPartitionContents() function above for the format of such a filename. <target_size> has
// become obsolete since we have dropped the support for patching non-EMMC targets (EMMC targets
// have the size embedded in the filename).
int applypatch(const char* source_filename, const char* target_filename,
const char* target_sha1_str, size_t /* target_size */,
const std::vector<std::string>& patch_sha1_str,
const std::vector<std::unique_ptr<Value>>& patch_data, const Value* bonus_data) {
printf("patch %s: ", source_filename);
if (target_filename[0] == '-' && target_filename[1] == '\0') {
target_filename = source_filename;
}
if (strncmp(target_filename, "EMMC:", 5) != 0) {
printf("Supporting patching EMMC targets only.\n");
return 1;
}
uint8_t target_sha1[SHA_DIGEST_LENGTH];
if (ParseSha1(target_sha1_str, target_sha1) != 0) {
printf("failed to parse tgt-sha1 \"%s\"\n", target_sha1_str);
return 1;
}
// We try to load the target file into the source_file object.
FileContents source_file;
if (LoadFileContents(target_filename, &source_file) == 0) {
if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) == 0) {
// The early-exit case: the patch was already applied, this file has the desired hash, nothing
// for us to do.
printf("already %s\n", short_sha1(target_sha1).c_str());
return 0;
}
}
if (source_file.data.empty() ||
(target_filename != source_filename && strcmp(target_filename, source_filename) != 0)) {
// Need to load the source file: either we failed to load the target file, or we did but it's
// different from the expected.
source_file.data.clear();
LoadFileContents(source_filename, &source_file);
}
if (!source_file.data.empty()) {
int to_use = FindMatchingPatch(source_file.sha1, patch_sha1_str);
if (to_use != -1) {
return GenerateTarget(source_file, patch_data[to_use], target_filename, target_sha1,
bonus_data);
}
}
printf("source file is bad; trying copy\n");
FileContents copy_file;
if (LoadFileContents(CacheLocation::location().cache_temp_source().c_str(), ©_file) < 0) {
printf("failed to read copy file\n");
return 1;
}
int to_use = FindMatchingPatch(copy_file.sha1, patch_sha1_str);
if (to_use == -1) {
printf("copy file doesn't match source SHA-1s either\n");
return 1;
}
return GenerateTarget(copy_file, patch_data[to_use], target_filename, target_sha1, bonus_data);
}
/*
* This function flashes a given image to the target partition. It verifies
* the target cheksum first, and will return if target has the desired hash.
* It checks the checksum of the given source image before flashing, and
* verifies the target partition afterwards. The function is idempotent.
* Returns zero on success.
*/
int applypatch_flash(const char* source_filename, const char* target_filename,
const char* target_sha1_str, size_t target_size) {
printf("flash %s: ", target_filename);
uint8_t target_sha1[SHA_DIGEST_LENGTH];
if (ParseSha1(target_sha1_str, target_sha1) != 0) {
printf("failed to parse tgt-sha1 \"%s\"\n", target_sha1_str);
return 1;
}
std::string target_str(target_filename);
std::vector<std::string> pieces = android::base::Split(target_str, ":");
if (pieces.size() != 2 || pieces[0] != "EMMC") {
printf("invalid target name \"%s\"", target_filename);
return 1;
}
// Load the target into the source_file object to see if already applied.
pieces.push_back(std::to_string(target_size));
pieces.push_back(target_sha1_str);
std::string fullname = android::base::Join(pieces, ':');
FileContents source_file;
if (LoadPartitionContents(fullname, &source_file) == 0 &&
memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) == 0) {
// The early-exit case: the image was already applied, this partition
// has the desired hash, nothing for us to do.
printf("already %s\n", short_sha1(target_sha1).c_str());
return 0;
}
if (LoadFileContents(source_filename, &source_file) == 0) {
if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) != 0) {
// The source doesn't have desired checksum.
printf("source \"%s\" doesn't have expected sha1 sum\n", source_filename);
printf("expected: %s, found: %s\n", short_sha1(target_sha1).c_str(),
short_sha1(source_file.sha1).c_str());
return 1;
}
}
if (WriteToPartition(source_file.data.data(), target_size, target_filename) != 0) {
printf("write of copied data to %s failed\n", target_filename);
return 1;
}
return 0;
}
static int GenerateTarget(const FileContents& source_file, const std::unique_ptr<Value>& patch,
const std::string& target_filename,
const uint8_t target_sha1[SHA_DIGEST_LENGTH], const Value* bonus_data) {
if (patch->type != VAL_BLOB) {
printf("patch is not a blob\n");
return 1;
}
const char* header = &patch->data[0];
size_t header_bytes_read = patch->data.size();
bool use_bsdiff = false;
if (header_bytes_read >= 8 && memcmp(header, "BSDIFF40", 8) == 0) {
use_bsdiff = true;
} else if (header_bytes_read >= 8 && memcmp(header, "IMGDIFF2", 8) == 0) {
use_bsdiff = false;
} else {
printf("Unknown patch file format\n");
return 1;
}
CHECK(android::base::StartsWith(target_filename, "EMMC:"));
// We still write the original source to cache, in case the partition write is interrupted.
if (MakeFreeSpaceOnCache(source_file.data.size()) < 0) {
printf("not enough free space on /cache\n");
return 1;
}
if (SaveFileContents(CacheLocation::location().cache_temp_source().c_str(), &source_file) < 0) {
printf("failed to back up source file\n");
return 1;
}
// We store the decoded output in memory.
std::string memory_sink_str; // Don't need to reserve space.
SinkFn sink = [&memory_sink_str](const unsigned char* data, size_t len) {
memory_sink_str.append(reinterpret_cast<const char*>(data), len);
return len;
};
SHA_CTX ctx;
SHA1_Init(&ctx);
int result;
if (use_bsdiff) {
result =
ApplyBSDiffPatch(source_file.data.data(), source_file.data.size(), *patch, 0, sink, &ctx);
} else {
result = ApplyImagePatch(source_file.data.data(), source_file.data.size(), *patch, sink, &ctx,
bonus_data);
}
if (result != 0) {
printf("applying patch failed\n");
return 1;
}
uint8_t current_target_sha1[SHA_DIGEST_LENGTH];
SHA1_Final(current_target_sha1, &ctx);
if (memcmp(current_target_sha1, target_sha1, SHA_DIGEST_LENGTH) != 0) {
printf("patch did not produce expected sha1\n");
return 1;
} else {
printf("now %s\n", short_sha1(target_sha1).c_str());
}
// Write back the temp file to the partition.
if (WriteToPartition(reinterpret_cast<const unsigned char*>(memory_sink_str.c_str()),
memory_sink_str.size(), target_filename) != 0) {
printf("write of patched data to %s failed\n", target_filename.c_str());
return 1;
}
// Delete the backup copy of the source.
unlink(CacheLocation::location().cache_temp_source().c_str());
// Success!
return 0;
}
|