from __future__ import annotations
import json
from aiohttp import ClientSession
from ..typing import AsyncResult, Messages
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from .helper import format_prompt
class Nexra(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://nexra.aryahcr.cc"
api_endpoint = "https://nexra.aryahcr.cc/api/chat/gpt"
working = True
supports_gpt_35_turbo = True
supports_gpt_4 = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'gpt-3.5-turbo'
models = [
# Working with text
'gpt-4',
'gpt-4-0613',
'gpt-4-32k',
'gpt-4-0314',
'gpt-4-32k-0314',
'gpt-3.5-turbo',
'gpt-3.5-turbo-16k',
'gpt-3.5-turbo-0613',
'gpt-3.5-turbo-16k-0613',
'gpt-3.5-turbo-0301',
'gpt-3',
'text-davinci-003',
'text-davinci-002',
'code-davinci-002',
'text-curie-001',
'text-babbage-001',
'text-ada-001',
'davinci',
'curie',
'babbage',
'ada',
'babbage-002',
'davinci-002',
]
model_aliases = {
"gpt-4": "gpt-4-0613",
"gpt-4": "gpt-4-32k",
"gpt-4": "gpt-4-0314",
"gpt-4": "gpt-4-32k-0314",
"gpt-3.5-turbo": "gpt-3.5-turbo-16k",
"gpt-3.5-turbo": "gpt-3.5-turbo-0613",
"gpt-3.5-turbo": "gpt-3.5-turbo-16k-0613",
"gpt-3.5-turbo": "gpt-3.5-turbo-0301",
"gpt-3": "text-davinci-003",
"gpt-3": "text-davinci-002",
"gpt-3": "code-davinci-002",
"gpt-3": "text-curie-001",
"gpt-3": "text-babbage-001",
"gpt-3": "text-ada-001",
"gpt-3": "text-ada-001",
"gpt-3": "davinci",
"gpt-3": "curie",
"gpt-3": "babbage",
"gpt-3": "ada",
"gpt-3": "babbage-002",
"gpt-3": "davinci-002",
}
@classmethod
def get_model(cls, model: str) -> str:
if model in cls.models:
return model
elif model in cls.model_aliases:
return cls.model_aliases[model]
else:
return cls.default_model
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
**kwargs
) -> AsyncResult:
model = cls.get_model(model)
headers = {
"Content-Type": "application/json",
}
async with ClientSession(headers=headers) as session:
data = {
"messages": messages,
"prompt": format_prompt(messages),
"model": model,
"markdown": False,
"stream": False,
}
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
response.raise_for_status()
result = await response.text()
json_result = json.loads(result)
yield json_result["gpt"]