summaryrefslogtreecommitdiffstats
path: root/aes.c
blob: b550ff61cdf48b825fe299e53fab6d2b61804f06 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
/*

This is an implementation of the AES algorithm, specifically ECB and CBC mode.
Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.

The implementation is verified against the test vectors in:
  National Institute of Standards and Technology Special Publication 800-38A 2001 ED

ECB-AES128
----------

  plain-text:
    6bc1bee22e409f96e93d7e117393172a
    ae2d8a571e03ac9c9eb76fac45af8e51
    30c81c46a35ce411e5fbc1191a0a52ef
    f69f2445df4f9b17ad2b417be66c3710

  key:
    2b7e151628aed2a6abf7158809cf4f3c

  resulting cipher
    3ad77bb40d7a3660a89ecaf32466ef97 
    f5d3d58503b9699de785895a96fdbaaf 
    43b1cd7f598ece23881b00e3ed030688 
    7b0c785e27e8ad3f8223207104725dd4 


NOTE:   String length must be evenly divisible by 16byte (str_len % 16 == 0)
        You should pad the end of the string with zeros if this is not the case.
        For AES192/256 the block size is proportionally larger.

*/


/*****************************************************************************/
/* Includes:                                                                 */
/*****************************************************************************/
#include <stdint.h>
#include <string.h> // CBC mode, for memset
#include "aes.h"

/*****************************************************************************/
/* Defines:                                                                  */
/*****************************************************************************/
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4
#define BLOCKLEN 16 //Block length in bytes AES is 128b block only

#if defined(AES256) && (AES256 == 1)
    #define Nk 8
    #define KEYLEN 32
    #define Nr 14
    #define keyExpSize 240
#elif defined(AES192) && (AES192 == 1)
    #define Nk 6
    #define KEYLEN 24
    #define Nr 12
    #define keyExpSize 208
#else
    #define Nk 4        // The number of 32 bit words in a key.
    #define KEYLEN 16   // Key length in bytes
    #define Nr 10       // The number of rounds in AES Cipher.
    #define keyExpSize 176
#endif

// jcallan@github points out that declaring Multiply as a function 
// reduces code size considerably with the Keil ARM compiler.
// See this link for more information: https://github.com/kokke/tiny-AES128-C/pull/3
#ifndef MULTIPLY_AS_A_FUNCTION
  #define MULTIPLY_AS_A_FUNCTION 0
#endif


/*****************************************************************************/
/* Private variables:                                                        */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];
static state_t* state;

// The array that stores the round keys.
static uint8_t RoundKey[keyExpSize];

// The Key input to the AES Program
static const uint8_t* Key;

#if defined(CBC) && CBC
  // Initial Vector used only for CBC mode
  static uint8_t* Iv;
#endif

// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM - 
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const uint8_t sbox[256] = {
  //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F
  0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
  0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
  0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
  0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
  0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
  0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
  0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
  0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
  0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
  0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
  0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
  0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
  0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
  0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
  0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
  0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };

static const uint8_t rsbox[256] = {
  0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
  0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
  0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
  0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
  0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
  0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
  0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
  0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
  0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
  0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
  0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
  0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
  0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
  0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
  0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
  0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };

// The round constant word array, Rcon[i], contains the values given by 
// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
static const uint8_t Rcon[256] = {
  0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
  0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
  0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
  0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
  0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
  0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
  0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
  0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
  0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
  0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
  0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
  0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
  0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
  0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
  0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
  0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d };


/*****************************************************************************/
/* Private functions:                                                        */
/*****************************************************************************/
static uint8_t getSBoxValue(uint8_t num)
{
  return sbox[num];
}

static uint8_t getSBoxInvert(uint8_t num)
{
  return rsbox[num];
}

// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. 
static void KeyExpansion(void)
{
  uint32_t i, k;
  uint8_t tempa[4]; // Used for the column/row operations
  
  // The first round key is the key itself.
  for (i = 0; i < Nk; ++i)
  {
    RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
    RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
    RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
    RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
  }

  // All other round keys are found from the previous round keys.
  //i == Nk
  for (; i < Nb * (Nr + 1); ++i)
  {
    {
      tempa[0]=RoundKey[(i-1) * 4 + 0];
      tempa[1]=RoundKey[(i-1) * 4 + 1];
      tempa[2]=RoundKey[(i-1) * 4 + 2];
      tempa[3]=RoundKey[(i-1) * 4 + 3];
    }

    if (i % Nk == 0)
    {
      // This function shifts the 4 bytes in a word to the left once.
      // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]

      // Function RotWord()
      {
        k = tempa[0];
        tempa[0] = tempa[1];
        tempa[1] = tempa[2];
        tempa[2] = tempa[3];
        tempa[3] = k;
      }

      // SubWord() is a function that takes a four-byte input word and 
      // applies the S-box to each of the four bytes to produce an output word.

      // Function Subword()
      {
        tempa[0] = getSBoxValue(tempa[0]);
        tempa[1] = getSBoxValue(tempa[1]);
        tempa[2] = getSBoxValue(tempa[2]);
        tempa[3] = getSBoxValue(tempa[3]);
      }

      tempa[0] =  tempa[0] ^ Rcon[i/Nk];
    }
#if defined(AES256) && (AES256 == 1)
    if (i % Nk == 4)
    {
      // Function Subword()
      {
        tempa[0] = getSBoxValue(tempa[0]);
        tempa[1] = getSBoxValue(tempa[1]);
        tempa[2] = getSBoxValue(tempa[2]);
        tempa[3] = getSBoxValue(tempa[3]);
      }
    }
#endif
    RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0];
    RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1];
    RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2];
    RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3];
  }
}

// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void AddRoundKey(uint8_t round)
{
  uint8_t i,j;
  for (i=0;i<4;++i)
  {
    for (j = 0; j < 4; ++j)
    {
      (*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j];
    }
  }
}

// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(void)
{
  uint8_t i, j;
  for (i = 0; i < 4; ++i)
  {
    for (j = 0; j < 4; ++j)
    {
      (*state)[j][i] = getSBoxValue((*state)[j][i]);
    }
  }
}

// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(void)
{
  uint8_t temp;

  // Rotate first row 1 columns to left  
  temp           = (*state)[0][1];
  (*state)[0][1] = (*state)[1][1];
  (*state)[1][1] = (*state)[2][1];
  (*state)[2][1] = (*state)[3][1];
  (*state)[3][1] = temp;

  // Rotate second row 2 columns to left  
  temp           = (*state)[0][2];
  (*state)[0][2] = (*state)[2][2];
  (*state)[2][2] = temp;

  temp           = (*state)[1][2];
  (*state)[1][2] = (*state)[3][2];
  (*state)[3][2] = temp;

  // Rotate third row 3 columns to left
  temp           = (*state)[0][3];
  (*state)[0][3] = (*state)[3][3];
  (*state)[3][3] = (*state)[2][3];
  (*state)[2][3] = (*state)[1][3];
  (*state)[1][3] = temp;
}

static uint8_t xtime(uint8_t x)
{
  return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}

// MixColumns function mixes the columns of the state matrix
static void MixColumns(void)
{
  uint8_t i;
  uint8_t Tmp,Tm,t;
  for (i = 0; i < 4; ++i)
  {  
    t   = (*state)[i][0];
    Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
    Tm  = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm);  (*state)[i][0] ^= Tm ^ Tmp ;
    Tm  = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm);  (*state)[i][1] ^= Tm ^ Tmp ;
    Tm  = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm);  (*state)[i][2] ^= Tm ^ Tmp ;
    Tm  = (*state)[i][3] ^ t ;              Tm = xtime(Tm);  (*state)[i][3] ^= Tm ^ Tmp ;
  }
}

// Multiply is used to multiply numbers in the field GF(2^8)
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{
  return (((y & 1) * x) ^
       ((y>>1 & 1) * xtime(x)) ^
       ((y>>2 & 1) * xtime(xtime(x))) ^
       ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
       ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));
  }
#else
#define Multiply(x, y)                                \
      (  ((y & 1) * x) ^                              \
      ((y>>1 & 1) * xtime(x)) ^                       \
      ((y>>2 & 1) * xtime(xtime(x))) ^                \
      ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^         \
      ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))   \

#endif

// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void InvMixColumns(void)
{
  int i;
  uint8_t a, b, c, d;
  for (i = 0; i < 4; ++i)
  { 
    a = (*state)[i][0];
    b = (*state)[i][1];
    c = (*state)[i][2];
    d = (*state)[i][3];

    (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
    (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
    (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
    (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
  }
}


// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void InvSubBytes(void)
{
  uint8_t i,j;
  for (i = 0; i < 4; ++i)
  {
    for (j = 0; j < 4; ++j)
    {
      (*state)[j][i] = getSBoxInvert((*state)[j][i]);
    }
  }
}

static void InvShiftRows(void)
{
  uint8_t temp;

  // Rotate first row 1 columns to right  
  temp = (*state)[3][1];
  (*state)[3][1] = (*state)[2][1];
  (*state)[2][1] = (*state)[1][1];
  (*state)[1][1] = (*state)[0][1];
  (*state)[0][1] = temp;

  // Rotate second row 2 columns to right 
  temp = (*state)[0][2];
  (*state)[0][2] = (*state)[2][2];
  (*state)[2][2] = temp;

  temp = (*state)[1][2];
  (*state)[1][2] = (*state)[3][2];
  (*state)[3][2] = temp;

  // Rotate third row 3 columns to right
  temp = (*state)[0][3];
  (*state)[0][3] = (*state)[1][3];
  (*state)[1][3] = (*state)[2][3];
  (*state)[2][3] = (*state)[3][3];
  (*state)[3][3] = temp;
}


// Cipher is the main function that encrypts the PlainText.
static void Cipher(void)
{
  uint8_t round = 0;

  // Add the First round key to the state before starting the rounds.
  AddRoundKey(0); 
  
  // There will be Nr rounds.
  // The first Nr-1 rounds are identical.
  // These Nr-1 rounds are executed in the loop below.
  for (round = 1; round < Nr; ++round)
  {
    SubBytes();
    ShiftRows();
    MixColumns();
    AddRoundKey(round);
  }
  
  // The last round is given below.
  // The MixColumns function is not here in the last round.
  SubBytes();
  ShiftRows();
  AddRoundKey(Nr);
}

static void InvCipher(void)
{
  uint8_t round=0;

  // Add the First round key to the state before starting the rounds.
  AddRoundKey(Nr); 

  // There will be Nr rounds.
  // The first Nr-1 rounds are identical.
  // These Nr-1 rounds are executed in the loop below.
  for (round = (Nr - 1); round > 0; --round)
  {
    InvShiftRows();
    InvSubBytes();
    AddRoundKey(round);
    InvMixColumns();
  }
  
  // The last round is given below.
  // The MixColumns function is not here in the last round.
  InvShiftRows();
  InvSubBytes();
  AddRoundKey(0);
}


/*****************************************************************************/
/* Public functions:                                                         */
/*****************************************************************************/
#if defined(ECB) && (ECB == 1)


void AES_ECB_encrypt(const uint8_t* input, const uint8_t* key, uint8_t* output, const uint32_t length)
{
  // Copy input to output, and work in-memory on output
  memcpy(output, input, length);
  state = (state_t*)output;

  Key = key;
  KeyExpansion();

  // The next function call encrypts the PlainText with the Key using AES algorithm.
  Cipher();
}

void AES_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length)
{
  // Copy input to output, and work in-memory on output
  memcpy(output, input, length);
  state = (state_t*)output;

  // The KeyExpansion routine must be called before encryption.
  Key = key;
  KeyExpansion();

  InvCipher();
}


#endif // #if defined(ECB) && (ECB == 1)





#if defined(CBC) && (CBC == 1)


static void XorWithIv(uint8_t* buf)
{
  uint8_t i;
  for (i = 0; i < BLOCKLEN; ++i) //WAS for(i = 0; i < KEYLEN; ++i) but the block in AES is always 128bit so 16 bytes!
  {
    buf[i] ^= Iv[i];
  }
}

void AES_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
{
  uintptr_t i;
  uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */

  // Skip the key expansion if key is passed as 0
  if (0 != key)
  {
    Key = key;
    KeyExpansion();
  }

  if (iv != 0)
  {
    Iv = (uint8_t*)iv;
  }

  for (i = 0; i < length; i += BLOCKLEN)
  {
    XorWithIv(input);
    memcpy(output, input, BLOCKLEN);
    state = (state_t*)output;
    Cipher();
    Iv = output;
    input += BLOCKLEN;
    output += BLOCKLEN;
    //printf("Step %d - %d", i/16, i);
  }

  if (extra)
  {
    memcpy(output, input, extra);
    state = (state_t*)output;
    Cipher();
  }
}

void AES_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
{
  uintptr_t i;
  uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */

  // Skip the key expansion if key is passed as 0
  if (0 != key)
  {
    Key = key;
    KeyExpansion();
  }

  // If iv is passed as 0, we continue to encrypt without re-setting the Iv
  if (iv != 0)
  {
    Iv = (uint8_t*)iv;
  }

  for (i = 0; i < length; i += BLOCKLEN)
  {
    memcpy(output, input, BLOCKLEN);
    state = (state_t*)output;
    InvCipher();
    XorWithIv(output);
    Iv = input;
    input += BLOCKLEN;
    output += BLOCKLEN;
  }

  if (extra)
  {
    memcpy(output, input, extra);
    state = (state_t*)output;
    InvCipher();
  }
}

#endif // #if defined(CBC) && (CBC == 1)