// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <random>
#include "common/scope_exit.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_scoped_resource_reservation.h"
#include "core/hle/kernel/k_shared_memory.h"
#include "core/hle/kernel/k_shared_memory_info.h"
#include "core/hle/kernel/k_thread_local_page.h"
#include "core/hle/kernel/k_thread_queue.h"
#include "core/hle/kernel/k_worker_task_manager.h"
#include "core/arm/dynarmic/arm_dynarmic_32.h"
#include "core/arm/dynarmic/arm_dynarmic_64.h"
#ifdef HAS_NCE
#include "core/arm/nce/arm_nce.h"
#endif
namespace Kernel {
namespace {
Result TerminateChildren(KernelCore& kernel, KProcess* process,
const KThread* thread_to_not_terminate) {
// Request that all children threads terminate.
{
KScopedLightLock proc_lk(process->GetListLock());
KScopedSchedulerLock sl(kernel);
if (thread_to_not_terminate != nullptr &&
process->GetPinnedThread(GetCurrentCoreId(kernel)) == thread_to_not_terminate) {
// NOTE: Here Nintendo unpins the current thread instead of the thread_to_not_terminate.
// This is valid because the only caller which uses non-nullptr as argument uses
// GetCurrentThreadPointer(), but it's still notable because it seems incorrect at
// first glance.
process->UnpinCurrentThread();
}
auto& thread_list = process->GetThreadList();
for (auto it = thread_list.begin(); it != thread_list.end(); ++it) {
if (KThread* thread = std::addressof(*it); thread != thread_to_not_terminate) {
if (thread->GetState() != ThreadState::Terminated) {
thread->RequestTerminate();
}
}
}
}
// Wait for all children threads to terminate.
while (true) {
// Get the next child.
KThread* cur_child = nullptr;
{
KScopedLightLock proc_lk(process->GetListLock());
auto& thread_list = process->GetThreadList();
for (auto it = thread_list.begin(); it != thread_list.end(); ++it) {
if (KThread* thread = std::addressof(*it); thread != thread_to_not_terminate) {
if (thread->GetState() != ThreadState::Terminated) {
if (thread->Open()) {
cur_child = thread;
break;
}
}
}
}
}
// If we didn't find any non-terminated children, we're done.
if (cur_child == nullptr) {
break;
}
// Terminate and close the thread.
SCOPE_EXIT({ cur_child->Close(); });
if (const Result terminate_result = cur_child->Terminate();
ResultTerminationRequested == terminate_result) {
R_THROW(terminate_result);
}
}
R_SUCCEED();
}
class ThreadQueueImplForKProcessEnterUserException final : public KThreadQueue {
private:
KThread** m_exception_thread;
public:
explicit ThreadQueueImplForKProcessEnterUserException(KernelCore& kernel, KThread** t)
: KThreadQueue(kernel), m_exception_thread(t) {}
virtual void EndWait(KThread* waiting_thread, Result wait_result) override {
// Set the exception thread.
*m_exception_thread = waiting_thread;
// Invoke the base end wait handler.
KThreadQueue::EndWait(waiting_thread, wait_result);
}
virtual void CancelWait(KThread* waiting_thread, Result wait_result,
bool cancel_timer_task) override {
// Remove the thread as a waiter on its mutex owner.
waiting_thread->GetLockOwner()->RemoveWaiter(waiting_thread);
// Invoke the base cancel wait handler.
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
}
};
void GenerateRandom(std::span<u64> out_random) {
std::mt19937 rng(Settings::values.rng_seed_enabled ? Settings::values.rng_seed.GetValue()
: static_cast<u32>(std::time(nullptr)));
std::uniform_int_distribution<u64> distribution;
std::generate(out_random.begin(), out_random.end(), [&] { return distribution(rng); });
}
} // namespace
void KProcess::Finalize() {
// Delete the process local region.
this->DeleteThreadLocalRegion(m_plr_address);
// Get the used memory size.
const size_t used_memory_size = this->GetUsedNonSystemUserPhysicalMemorySize();
// Finalize the page table.
m_page_table.Finalize();
// Finish using our system resource.
if (m_system_resource) {
if (m_system_resource->IsSecureResource()) {
// Finalize optimized memory. If memory wasn't optimized, this is a no-op.
m_kernel.MemoryManager().FinalizeOptimizedMemory(this->GetId(), m_memory_pool);
}
m_system_resource->Close();
m_system_resource = nullptr;
}
// Free all shared memory infos.
{
auto it = m_shared_memory_list.begin();
while (it != m_shared_memory_list.end()) {
KSharedMemoryInfo* info = std::addressof(*it);
KSharedMemory* shmem = info->GetSharedMemory();
while (!info->Close()) {
shmem->Close();
}
shmem->Close();
it = m_shared_memory_list.erase(it);
KSharedMemoryInfo::Free(m_kernel, info);
}
}
// Our thread local page list must be empty at this point.
ASSERT(m_partially_used_tlp_tree.empty());
ASSERT(m_fully_used_tlp_tree.empty());
// Release memory to the resource limit.
if (m_resource_limit != nullptr) {
ASSERT(used_memory_size >= m_memory_release_hint);
m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax, used_memory_size,
used_memory_size - m_memory_release_hint);
m_resource_limit->Close();
}
// Perform inherited finalization.
KSynchronizationObject::Finalize();
}
Result KProcess::Initialize(const Svc::CreateProcessParameter& params, KResourceLimit* res_limit,
bool is_real) {
// TODO: remove this special case
if (is_real) {
// Create and clear the process local region.
R_TRY(this->CreateThreadLocalRegion(std::addressof(m_plr_address)));
this->GetMemory().ZeroBlock(m_plr_address, Svc::ThreadLocalRegionSize);
}
// Copy in the name from parameters.
static_assert(sizeof(params.name) < sizeof(m_name));
std::memcpy(m_name.data(), params.name.data(), sizeof(params.name));
m_name[sizeof(params.name)] = 0;
// Set misc fields.
m_state = State::Created;
m_main_thread_stack_size = 0;
m_used_kernel_memory_size = 0;
m_ideal_core_id = 0;
m_flags = params.flags;
m_version = params.version;
m_program_id = params.program_id;
m_code_address = params.code_address;
m_code_size = params.code_num_pages * PageSize;
m_is_application = True(params.flags & Svc::CreateProcessFlag::IsApplication);
// Set thread fields.
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
m_running_threads[i] = nullptr;
m_pinned_threads[i] = nullptr;
m_running_thread_idle_counts[i] = 0;
m_running_thread_switch_counts[i] = 0;
}
// Set max memory based on address space type.
switch ((params.flags & Svc::CreateProcessFlag::AddressSpaceMask)) {
case Svc::CreateProcessFlag::AddressSpace32Bit:
case Svc::CreateProcessFlag::AddressSpace64BitDeprecated:
case Svc::CreateProcessFlag::AddressSpace64Bit:
m_max_process_memory = m_page_table.GetHeapRegionSize();
break;
case Svc::CreateProcessFlag::AddressSpace32BitWithoutAlias:
m_max_process_memory = m_page_table.GetHeapRegionSize() + m_page_table.GetAliasRegionSize();
break;
default:
UNREACHABLE();
}
// Generate random entropy.
GenerateRandom(m_entropy);
// Clear remaining fields.
m_num_running_threads = 0;
m_num_process_switches = 0;
m_num_thread_switches = 0;
m_num_fpu_switches = 0;
m_num_supervisor_calls = 0;
m_num_ipc_messages = 0;
m_is_signaled = false;
m_exception_thread = nullptr;
m_is_suspended = false;
m_memory_release_hint = 0;
m_schedule_count = 0;
m_is_handle_table_initialized = false;
// Open a reference to our resource limit.
m_resource_limit = res_limit;
m_resource_limit->Open();
// We're initialized!
m_is_initialized = true;
R_SUCCEED();
}
Result KProcess::Initialize(const Svc::CreateProcessParameter& params, const KPageGroup& pg,
std::span<const u32> caps, KResourceLimit* res_limit,
KMemoryManager::Pool pool, bool immortal) {
ASSERT(res_limit != nullptr);
ASSERT((params.code_num_pages * PageSize) / PageSize ==
static_cast<size_t>(params.code_num_pages));
// Set members.
m_memory_pool = pool;
m_is_default_application_system_resource = false;
m_is_immortal = immortal;
// Setup our system resource.
if (const size_t system_resource_num_pages = params.system_resource_num_pages;
system_resource_num_pages != 0) {
// Create a secure system resource.
KSecureSystemResource* secure_resource = KSecureSystemResource::Create(m_kernel);
R_UNLESS(secure_resource != nullptr, ResultOutOfResource);
ON_RESULT_FAILURE {
secure_resource->Close();
};
// Initialize the secure resource.
R_TRY(secure_resource->Initialize(system_resource_num_pages * PageSize, res_limit,
m_memory_pool));
// Set our system resource.
m_system_resource = secure_resource;
} else {
// Use the system-wide system resource.
const bool is_app = True(params.flags & Svc::CreateProcessFlag::IsApplication);
m_system_resource = std::addressof(is_app ? m_kernel.GetAppSystemResource()
: m_kernel.GetSystemSystemResource());
m_is_default_application_system_resource = is_app;
// Open reference to the system resource.
m_system_resource->Open();
}
// Ensure we clean up our secure resource, if we fail.
ON_RESULT_FAILURE {
m_system_resource->Close();
m_system_resource = nullptr;
};
// Setup page table.
{
const auto as_type = params.flags & Svc::CreateProcessFlag::AddressSpaceMask;
const bool enable_aslr = True(params.flags & Svc::CreateProcessFlag::EnableAslr);
const bool enable_das_merge =
False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge);
R_TRY(m_page_table.Initialize(as_type, enable_aslr, enable_das_merge, !enable_aslr, pool,
params.code_address, params.code_num_pages * PageSize,
m_system_resource, res_limit, m_memory, 0));
}
ON_RESULT_FAILURE_2 {
m_page_table.Finalize();
};
// Ensure our memory is initialized.
m_memory.SetCurrentPageTable(*this);
m_memory.SetGPUDirtyManagers(m_dirty_memory_managers);
// Ensure we can insert the code region.
R_UNLESS(m_page_table.CanContain(params.code_address, params.code_num_pages * PageSize,
KMemoryState::Code),
ResultInvalidMemoryRegion);
// Map the code region.
R_TRY(m_page_table.MapPageGroup(params.code_address, pg, KMemoryState::Code,
KMemoryPermission::KernelRead));
// Initialize capabilities.
R_TRY(m_capabilities.InitializeForKip(caps, std::addressof(m_page_table)));
// Initialize the process id.
m_process_id = m_kernel.CreateNewUserProcessID();
ASSERT(InitialProcessIdMin <= m_process_id);
ASSERT(m_process_id <= InitialProcessIdMax);
// Initialize the rest of the process.
R_TRY(this->Initialize(params, res_limit, true));
// We succeeded!
R_SUCCEED();
}
Result KProcess::Initialize(const Svc::CreateProcessParameter& params,
std::span<const u32> user_caps, KResourceLimit* res_limit,
KMemoryManager::Pool pool, KProcessAddress aslr_space_start) {
ASSERT(res_limit != nullptr);
// Set members.
m_memory_pool = pool;
m_is_default_application_system_resource = false;
m_is_immortal = false;
// Get the memory sizes.
const size_t code_num_pages = params.code_num_pages;
const size_t system_resource_num_pages = params.system_resource_num_pages;
const size_t code_size = code_num_pages * PageSize;
const size_t system_resource_size = system_resource_num_pages * PageSize;
// Reserve memory for our code resource.
KScopedResourceReservation memory_reservation(
res_limit, Svc::LimitableResource::PhysicalMemoryMax, code_size);
R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
// Setup our system resource.
if (system_resource_num_pages != 0) {
// Create a secure system resource.
KSecureSystemResource* secure_resource = KSecureSystemResource::Create(m_kernel);
R_UNLESS(secure_resource != nullptr, ResultOutOfResource);
ON_RESULT_FAILURE {
secure_resource->Close();
};
// Initialize the secure resource.
R_TRY(secure_resource->Initialize(system_resource_size, res_limit, m_memory_pool));
// Set our system resource.
m_system_resource = secure_resource;
} else {
// Use the system-wide system resource.
const bool is_app = True(params.flags & Svc::CreateProcessFlag::IsApplication);
m_system_resource = std::addressof(is_app ? m_kernel.GetAppSystemResource()
: m_kernel.GetSystemSystemResource());
m_is_default_application_system_resource = is_app;
// Open reference to the system resource.
m_system_resource->Open();
}
// Ensure we clean up our secure resource, if we fail.
ON_RESULT_FAILURE {
m_system_resource->Close();
m_system_resource = nullptr;
};
// Setup page table.
{
const auto as_type = params.flags & Svc::CreateProcessFlag::AddressSpaceMask;
const bool enable_aslr = True(params.flags & Svc::CreateProcessFlag::EnableAslr);
const bool enable_das_merge =
False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge);
R_TRY(m_page_table.Initialize(as_type, enable_aslr, enable_das_merge, !enable_aslr, pool,
params.code_address, code_size, m_system_resource, res_limit,
m_memory, aslr_space_start));
}
ON_RESULT_FAILURE_2 {
m_page_table.Finalize();
};
// Ensure our memory is initialized.
m_memory.SetCurrentPageTable(*this);
m_memory.SetGPUDirtyManagers(m_dirty_memory_managers);
// Ensure we can insert the code region.
R_UNLESS(m_page_table.CanContain(params.code_address, code_size, KMemoryState::Code),
ResultInvalidMemoryRegion);
// Map the code region.
R_TRY(m_page_table.MapPages(params.code_address, code_num_pages, KMemoryState::Code,
KMemoryPermission::KernelRead | KMemoryPermission::NotMapped));
// Initialize capabilities.
R_TRY(m_capabilities.InitializeForUser(user_caps, std::addressof(m_page_table)));
// Initialize the process id.
m_process_id = m_kernel.CreateNewUserProcessID();
ASSERT(ProcessIdMin <= m_process_id);
ASSERT(m_process_id <= ProcessIdMax);
// If we should optimize memory allocations, do so.
if (m_system_resource->IsSecureResource() &&
True(params.flags & Svc::CreateProcessFlag::OptimizeMemoryAllocation)) {
R_TRY(m_kernel.MemoryManager().InitializeOptimizedMemory(m_process_id, pool));
}
// Initialize the rest of the process.
R_TRY(this->Initialize(params, res_limit, true));
// We succeeded, so commit our memory reservation.
memory_reservation.Commit();
R_SUCCEED();
}
void KProcess::DoWorkerTaskImpl() {
// Terminate child threads.
TerminateChildren(m_kernel, this, nullptr);
// Finalize the handle table, if we're not immortal.
if (!m_is_immortal && m_is_handle_table_initialized) {
this->FinalizeHandleTable();
}
// Finish termination.
this->FinishTermination();
}
Result KProcess::StartTermination() {
// Finalize the handle table when we're done, if the process isn't immortal.
SCOPE_EXIT({
if (!m_is_immortal) {
this->FinalizeHandleTable();
}
});
// Terminate child threads other than the current one.
R_RETURN(TerminateChildren(m_kernel, this, GetCurrentThreadPointer(m_kernel)));
}
void KProcess::FinishTermination() {
// Only allow termination to occur if the process isn't immortal.
if (!m_is_immortal) {
// Release resource limit hint.
if (m_resource_limit != nullptr) {
m_memory_release_hint = this->GetUsedNonSystemUserPhysicalMemorySize();
m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax, 0,
m_memory_release_hint);
}
// Change state.
{
KScopedSchedulerLock sl(m_kernel);
this->ChangeState(State::Terminated);
}
// Close.
this->Close();
}
}
void KProcess::Exit() {
// Determine whether we need to start terminating
bool needs_terminate = false;
{
KScopedLightLock lk(m_state_lock);
KScopedSchedulerLock sl(m_kernel);
ASSERT(m_state != State::Created);
ASSERT(m_state != State::CreatedAttached);
ASSERT(m_state != State::Crashed);
ASSERT(m_state != State::Terminated);
if (m_state == State::Running || m_state == State::RunningAttached ||
m_state == State::DebugBreak) {
this->ChangeState(State::Terminating);
needs_terminate = true;
}
}
// If we need to start termination, do so.
if (needs_terminate) {
this->StartTermination();
// Register the process as a work task.
m_kernel.WorkerTaskManager().AddTask(m_kernel, KWorkerTaskManager::WorkerType::Exit, this);
}
// Exit the current thread.
GetCurrentThread(m_kernel).Exit();
}
Result KProcess::Terminate() {
// Determine whether we need to start terminating.
bool needs_terminate = false;
{
KScopedLightLock lk(m_state_lock);
// Check whether we're allowed to terminate.
R_UNLESS(m_state != State::Created, ResultInvalidState);
R_UNLESS(m_state != State::CreatedAttached, ResultInvalidState);
KScopedSchedulerLock sl(m_kernel);
if (m_state == State::Running || m_state == State::RunningAttached ||
m_state == State::Crashed || m_state == State::DebugBreak) {
this->ChangeState(State::Terminating);
needs_terminate = true;
}
}
// If we need to terminate, do so.
if (needs_terminate) {
// Start termination.
if (R_SUCCEEDED(this->StartTermination())) {
// Finish termination.
this->FinishTermination();
} else {
// Register the process as a work task.
m_kernel.WorkerTaskManager().AddTask(m_kernel, KWorkerTaskManager::WorkerType::Exit,
this);
}
}
R_SUCCEED();
}
Result KProcess::AddSharedMemory(KSharedMemory* shmem, KProcessAddress address, size_t size) {
// Lock ourselves, to prevent concurrent access.
KScopedLightLock lk(m_state_lock);
// Try to find an existing info for the memory.
KSharedMemoryInfo* info = nullptr;
for (auto it = m_shared_memory_list.begin(); it != m_shared_memory_list.end(); ++it) {
if (it->GetSharedMemory() == shmem) {
info = std::addressof(*it);
break;
}
}
// If we didn't find an info, create one.
if (info == nullptr) {
// Allocate a new info.
info = KSharedMemoryInfo::Allocate(m_kernel);
R_UNLESS(info != nullptr, ResultOutOfResource);
// Initialize the info and add it to our list.
info->Initialize(shmem);
m_shared_memory_list.push_back(*info);
}
// Open a reference to the shared memory and its info.
shmem->Open();
info->Open();
R_SUCCEED();
}
void KProcess::RemoveSharedMemory(KSharedMemory* shmem, KProcessAddress address, size_t size) {
// Lock ourselves, to prevent concurrent access.
KScopedLightLock lk(m_state_lock);
// Find an existing info for the memory.
KSharedMemoryInfo* info = nullptr;
auto it = m_shared_memory_list.begin();
for (; it != m_shared_memory_list.end(); ++it) {
if (it->GetSharedMemory() == shmem) {
info = std::addressof(*it);
break;
}
}
ASSERT(info != nullptr);
// Close a reference to the info and its memory.
if (info->Close()) {
m_shared_memory_list.erase(it);
KSharedMemoryInfo::Free(m_kernel, info);
}
shmem->Close();
}
Result KProcess::CreateThreadLocalRegion(KProcessAddress* out) {
KThreadLocalPage* tlp = nullptr;
KProcessAddress tlr = 0;
// See if we can get a region from a partially used TLP.
{
KScopedSchedulerLock sl(m_kernel);
if (auto it = m_partially_used_tlp_tree.begin(); it != m_partially_used_tlp_tree.end()) {
tlr = it->Reserve();
ASSERT(tlr != 0);
if (it->IsAllUsed()) {
tlp = std::addressof(*it);
m_partially_used_tlp_tree.erase(it);
m_fully_used_tlp_tree.insert(*tlp);
}
*out = tlr;
R_SUCCEED();
}
}
// Allocate a new page.
tlp = KThreadLocalPage::Allocate(m_kernel);
R_UNLESS(tlp != nullptr, ResultOutOfMemory);
ON_RESULT_FAILURE {
KThreadLocalPage::Free(m_kernel, tlp);
};
// Initialize the new page.
R_TRY(tlp->Initialize(m_kernel, this));
// Reserve a TLR.
tlr = tlp->Reserve();
ASSERT(tlr != 0);
// Insert into our tree.
{
KScopedSchedulerLock sl(m_kernel);
if (tlp->IsAllUsed()) {
m_fully_used_tlp_tree.insert(*tlp);
} else {
m_partially_used_tlp_tree.insert(*tlp);
}
}
// We succeeded!
*out = tlr;
R_SUCCEED();
}
Result KProcess::DeleteThreadLocalRegion(KProcessAddress addr) {
KThreadLocalPage* page_to_free = nullptr;
// Release the region.
{
KScopedSchedulerLock sl(m_kernel);
// Try to find the page in the partially used list.
auto it = m_partially_used_tlp_tree.find_key(Common::AlignDown(GetInteger(addr), PageSize));
if (it == m_partially_used_tlp_tree.end()) {
// If we don't find it, it has to be in the fully used list.
it = m_fully_used_tlp_tree.find_key(Common::AlignDown(GetInteger(addr), PageSize));
R_UNLESS(it != m_fully_used_tlp_tree.end(), ResultInvalidAddress);
// Release the region.
it->Release(addr);
// Move the page out of the fully used list.
KThreadLocalPage* tlp = std::addressof(*it);
m_fully_used_tlp_tree.erase(it);
if (tlp->IsAllFree()) {
page_to_free = tlp;
} else {
m_partially_used_tlp_tree.insert(*tlp);
}
} else {
// Release the region.
it->Release(addr);
// Handle the all-free case.
KThreadLocalPage* tlp = std::addressof(*it);
if (tlp->IsAllFree()) {
m_partially_used_tlp_tree.erase(it);
page_to_free = tlp;
}
}
}
// If we should free the page it was in, do so.
if (page_to_free != nullptr) {
page_to_free->Finalize();
KThreadLocalPage::Free(m_kernel, page_to_free);
}
R_SUCCEED();
}
bool KProcess::ReserveResource(Svc::LimitableResource which, s64 value) {
if (KResourceLimit* rl = this->GetResourceLimit(); rl != nullptr) {
return rl->Reserve(which, value);
} else {
return true;
}
}
bool KProcess::ReserveResource(Svc::LimitableResource which, s64 value, s64 timeout) {
if (KResourceLimit* rl = this->GetResourceLimit(); rl != nullptr) {
return rl->Reserve(which, value, timeout);
} else {
return true;
}
}
void KProcess::ReleaseResource(Svc::LimitableResource which, s64 value) {
if (KResourceLimit* rl = this->GetResourceLimit(); rl != nullptr) {
rl->Release(which, value);
}
}
void KProcess::ReleaseResource(Svc::LimitableResource which, s64 value, s64 hint) {
if (KResourceLimit* rl = this->GetResourceLimit(); rl != nullptr) {
rl->Release(which, value, hint);
}
}
void KProcess::IncrementRunningThreadCount() {
ASSERT(m_num_running_threads.load() >= 0);
++m_num_running_threads;
}
void KProcess::DecrementRunningThreadCount() {
ASSERT(m_num_running_threads.load() > 0);
if (const auto prev = m_num_running_threads--; prev == 1) {
this->Terminate();
}
}
bool KProcess::EnterUserException() {
// Get the current thread.
KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
ASSERT(this == cur_thread->GetOwnerProcess());
// Check that we haven't already claimed the exception thread.
if (m_exception_thread == cur_thread) {
return false;
}
// Create the wait queue we'll be using.
ThreadQueueImplForKProcessEnterUserException wait_queue(m_kernel,
std::addressof(m_exception_thread));
// Claim the exception thread.
{
// Lock the scheduler.
KScopedSchedulerLock sl(m_kernel);
// Check that we're not terminating.
if (cur_thread->IsTerminationRequested()) {
return false;
}
// If we don't have an exception thread, we can just claim it directly.
if (m_exception_thread == nullptr) {
m_exception_thread = cur_thread;
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
return true;
}
// Otherwise, we need to wait until we don't have an exception thread.
// Add the current thread as a waiter on the current exception thread.
cur_thread->SetKernelAddressKey(
reinterpret_cast<uintptr_t>(std::addressof(m_exception_thread)) | 1);
m_exception_thread->AddWaiter(cur_thread);
// Wait to claim the exception thread.
cur_thread->BeginWait(std::addressof(wait_queue));
}
// If our wait didn't end due to thread termination, we succeeded.
return ResultTerminationRequested != cur_thread->GetWaitResult();
}
bool KProcess::LeaveUserException() {
return this->ReleaseUserException(GetCurrentThreadPointer(m_kernel));
}
bool KProcess::ReleaseUserException(KThread* thread) {
KScopedSchedulerLock sl(m_kernel);
if (m_exception_thread == thread) {
m_exception_thread = nullptr;
// Remove waiter thread.
bool has_waiters;
if (KThread* next = thread->RemoveKernelWaiterByKey(
std::addressof(has_waiters),
reinterpret_cast<uintptr_t>(std::addressof(m_exception_thread)) | 1);
next != nullptr) {
next->EndWait(ResultSuccess);
}
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
return true;
} else {
return false;
}
}
void KProcess::RegisterThread(KThread* thread) {
KScopedLightLock lk(m_list_lock);
m_thread_list.push_back(*thread);
}
void KProcess::UnregisterThread(KThread* thread) {
KScopedLightLock lk(m_list_lock);
m_thread_list.erase(m_thread_list.iterator_to(*thread));
}
size_t KProcess::GetUsedUserPhysicalMemorySize() const {
const size_t norm_size = m_page_table.GetNormalMemorySize();
const size_t other_size = m_code_size + m_main_thread_stack_size;
const size_t sec_size = this->GetRequiredSecureMemorySizeNonDefault();
return norm_size + other_size + sec_size;
}
size_t KProcess::GetTotalUserPhysicalMemorySize() const {
// Get the amount of free and used size.
const size_t free_size =
m_resource_limit->GetFreeValue(Svc::LimitableResource::PhysicalMemoryMax);
const size_t max_size = m_max_process_memory;
// Determine used size.
// NOTE: This does *not* check this->IsDefaultApplicationSystemResource(), unlike
// GetUsedUserPhysicalMemorySize().
const size_t norm_size = m_page_table.GetNormalMemorySize();
const size_t other_size = m_code_size + m_main_thread_stack_size;
const size_t sec_size = this->GetRequiredSecureMemorySize();
const size_t used_size = norm_size + other_size + sec_size;
// NOTE: These function calls will recalculate, introducing a race...it is unclear why Nintendo
// does it this way.
if (used_size + free_size > max_size) {
return max_size;
} else {
return free_size + this->GetUsedUserPhysicalMemorySize();
}
}
size_t KProcess::GetUsedNonSystemUserPhysicalMemorySize() const {
const size_t norm_size = m_page_table.GetNormalMemorySize();
const size_t other_size = m_code_size + m_main_thread_stack_size;
return norm_size + other_size;
}
size_t KProcess::GetTotalNonSystemUserPhysicalMemorySize() const {
// Get the amount of free and used size.
const size_t free_size =
m_resource_limit->GetFreeValue(Svc::LimitableResource::PhysicalMemoryMax);
const size_t max_size = m_max_process_memory;
// Determine used size.
// NOTE: This does *not* check this->IsDefaultApplicationSystemResource(), unlike
// GetUsedUserPhysicalMemorySize().
const size_t norm_size = m_page_table.GetNormalMemorySize();
const size_t other_size = m_code_size + m_main_thread_stack_size;
const size_t sec_size = this->GetRequiredSecureMemorySize();
const size_t used_size = norm_size + other_size + sec_size;
// NOTE: These function calls will recalculate, introducing a race...it is unclear why Nintendo
// does it this way.
if (used_size + free_size > max_size) {
return max_size - this->GetRequiredSecureMemorySizeNonDefault();
} else {
return free_size + this->GetUsedNonSystemUserPhysicalMemorySize();
}
}
Result KProcess::Run(s32 priority, size_t stack_size) {
// Lock ourselves, to prevent concurrent access.
KScopedLightLock lk(m_state_lock);
// Validate that we're in a state where we can initialize.
const auto state = m_state;
R_UNLESS(state == State::Created || state == State::CreatedAttached, ResultInvalidState);
// Place a tentative reservation of a thread for this process.
KScopedResourceReservation thread_reservation(this, Svc::LimitableResource::ThreadCountMax);
R_UNLESS(thread_reservation.Succeeded(), ResultLimitReached);
// Ensure that we haven't already allocated stack.
ASSERT(m_main_thread_stack_size == 0);
// Ensure that we're allocating a valid stack.
stack_size = Common::AlignUp(stack_size, PageSize);
R_UNLESS(stack_size + m_code_size <= m_max_process_memory, ResultOutOfMemory);
R_UNLESS(stack_size + m_code_size >= m_code_size, ResultOutOfMemory);
// Place a tentative reservation of memory for our new stack.
KScopedResourceReservation mem_reservation(this, Svc::LimitableResource::PhysicalMemoryMax,
stack_size);
R_UNLESS(mem_reservation.Succeeded(), ResultLimitReached);
// Allocate and map our stack.
KProcessAddress stack_top = 0;
if (stack_size) {
KProcessAddress stack_bottom;
R_TRY(m_page_table.MapPages(std::addressof(stack_bottom), stack_size / PageSize,
KMemoryState::Stack, KMemoryPermission::UserReadWrite));
stack_top = stack_bottom + stack_size;
m_main_thread_stack_size = stack_size;
}
// Ensure our stack is safe to clean up on exit.
ON_RESULT_FAILURE {
if (m_main_thread_stack_size) {
ASSERT(R_SUCCEEDED(m_page_table.UnmapPages(stack_top - m_main_thread_stack_size,
m_main_thread_stack_size / PageSize,
KMemoryState::Stack)));
m_main_thread_stack_size = 0;
}
};
// Set our maximum heap size.
R_TRY(m_page_table.SetMaxHeapSize(m_max_process_memory -
(m_main_thread_stack_size + m_code_size)));
// Initialize our handle table.
R_TRY(this->InitializeHandleTable(m_capabilities.GetHandleTableSize()));
ON_RESULT_FAILURE_2 {
this->FinalizeHandleTable();
};
// Create a new thread for the process.
KThread* main_thread = KThread::Create(m_kernel);
R_UNLESS(main_thread != nullptr, ResultOutOfResource);
SCOPE_EXIT({ main_thread->Close(); });
// Initialize the thread.
R_TRY(KThread::InitializeUserThread(m_kernel.System(), main_thread, this->GetEntryPoint(), 0,
stack_top, priority, m_ideal_core_id, this));
// Register the thread, and commit our reservation.
KThread::Register(m_kernel, main_thread);
thread_reservation.Commit();
// Add the thread to our handle table.
Handle thread_handle;
R_TRY(m_handle_table.Add(std::addressof(thread_handle), main_thread));
// Set the thread arguments.
main_thread->GetContext().r[0] = 0;
main_thread->GetContext().r[1] = thread_handle;
// Update our state.
this->ChangeState((state == State::Created) ? State::Running : State::RunningAttached);
ON_RESULT_FAILURE_2 {
this->ChangeState(state);
};
// Suspend for debug, if we should.
if (m_kernel.System().DebuggerEnabled()) {
main_thread->RequestSuspend(SuspendType::Debug);
}
// Run our thread.
R_TRY(main_thread->Run());
// Open a reference to represent that we're running.
this->Open();
// We succeeded! Commit our memory reservation.
mem_reservation.Commit();
R_SUCCEED();
}
Result KProcess::Reset() {
// Lock the process and the scheduler.
KScopedLightLock lk(m_state_lock);
KScopedSchedulerLock sl(m_kernel);
// Validate that we're in a state that we can reset.
R_UNLESS(m_state != State::Terminated, ResultInvalidState);
R_UNLESS(m_is_signaled, ResultInvalidState);
// Clear signaled.
m_is_signaled = false;
R_SUCCEED();
}
Result KProcess::SetActivity(Svc::ProcessActivity activity) {
// Lock ourselves and the scheduler.
KScopedLightLock lk(m_state_lock);
KScopedLightLock list_lk(m_list_lock);
KScopedSchedulerLock sl(m_kernel);
// Validate our state.
R_UNLESS(m_state != State::Terminating, ResultInvalidState);
R_UNLESS(m_state != State::Terminated, ResultInvalidState);
// Either pause or resume.
if (activity == Svc::ProcessActivity::Paused) {
// Verify that we're not suspended.
R_UNLESS(!m_is_suspended, ResultInvalidState);
// Suspend all threads.
auto end = this->GetThreadList().end();
for (auto it = this->GetThreadList().begin(); it != end; ++it) {
it->RequestSuspend(SuspendType::Process);
}
// Set ourselves as suspended.
this->SetSuspended(true);
} else {
ASSERT(activity == Svc::ProcessActivity::Runnable);
// Verify that we're suspended.
R_UNLESS(m_is_suspended, ResultInvalidState);
// Resume all threads.
auto end = this->GetThreadList().end();
for (auto it = this->GetThreadList().begin(); it != end; ++it) {
it->Resume(SuspendType::Process);
}
// Set ourselves as resumed.
this->SetSuspended(false);
}
R_SUCCEED();
}
void KProcess::PinCurrentThread() {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the current thread.
const s32 core_id = GetCurrentCoreId(m_kernel);
KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
// If the thread isn't terminated, pin it.
if (!cur_thread->IsTerminationRequested()) {
// Pin it.
this->PinThread(core_id, cur_thread);
cur_thread->Pin(core_id);
// An update is needed.
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
}
void KProcess::UnpinCurrentThread() {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the current thread.
const s32 core_id = GetCurrentCoreId(m_kernel);
KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
// Unpin it.
cur_thread->Unpin();
this->UnpinThread(core_id, cur_thread);
// An update is needed.
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
void KProcess::UnpinThread(KThread* thread) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the thread's core id.
const auto core_id = thread->GetActiveCore();
// Unpin it.
this->UnpinThread(core_id, thread);
thread->Unpin();
// An update is needed.
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
Result KProcess::GetThreadList(s32* out_num_threads, KProcessAddress out_thread_ids,
s32 max_out_count) {
auto& memory = this->GetMemory();
// Lock the list.
KScopedLightLock lk(m_list_lock);
// Iterate over the list.
s32 count = 0;
auto end = this->GetThreadList().end();
for (auto it = this->GetThreadList().begin(); it != end; ++it) {
// If we're within array bounds, write the id.
if (count < max_out_count) {
// Get the thread id.
KThread* thread = std::addressof(*it);
const u64 id = thread->GetId();
// Copy the id to userland.
memory.Write64(out_thread_ids + count * sizeof(u64), id);
}
// Increment the count.
++count;
}
// We successfully iterated the list.
*out_num_threads = count;
R_SUCCEED();
}
void KProcess::Switch(KProcess* cur_process, KProcess* next_process) {}
KProcess::KProcess(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer(kernel), m_page_table{kernel}, m_state_lock{kernel},
m_list_lock{kernel}, m_cond_var{kernel.System()}, m_address_arbiter{kernel.System()},
m_handle_table{kernel}, m_dirty_memory_managers{},
m_exclusive_monitor{}, m_memory{kernel.System()} {}
KProcess::~KProcess() = default;
Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size,
KProcessAddress aslr_space_start, bool is_hbl) {
// Create a resource limit for the process.
const auto pool = static_cast<KMemoryManager::Pool>(metadata.GetPoolPartition());
const auto physical_memory_size = m_kernel.MemoryManager().GetSize(pool);
auto* res_limit =
Kernel::CreateResourceLimitForProcess(m_kernel.System(), physical_memory_size);
// Ensure we maintain a clean state on exit.
SCOPE_EXIT({ res_limit->Close(); });
// Declare flags and code address.
Svc::CreateProcessFlag flag{};
u64 code_address{};
// Determine if we are an application.
if (pool == KMemoryManager::Pool::Application) {
flag |= Svc::CreateProcessFlag::IsApplication;
}
// If we are 64-bit, create as such.
if (metadata.Is64BitProgram()) {
flag |= Svc::CreateProcessFlag::Is64Bit;
}
// Set the address space type and code address.
switch (metadata.GetAddressSpaceType()) {
case FileSys::ProgramAddressSpaceType::Is39Bit:
flag |= Svc::CreateProcessFlag::AddressSpace64Bit;
// For 39-bit processes, the ASLR region starts at 0x800'0000 and is ~512GiB large.
// However, some (buggy) programs/libraries like skyline incorrectly depend on the
// existence of ASLR pages before the entry point, so we will adjust the load address
// to point to about 2GiB into the ASLR region.
code_address = 0x8000'0000;
break;
case FileSys::ProgramAddressSpaceType::Is36Bit:
flag |= Svc::CreateProcessFlag::AddressSpace64BitDeprecated;
code_address = 0x800'0000;
break;
case FileSys::ProgramAddressSpaceType::Is32Bit:
flag |= Svc::CreateProcessFlag::AddressSpace32Bit;
code_address = 0x20'0000;
break;
case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
flag |= Svc::CreateProcessFlag::AddressSpace32BitWithoutAlias;
code_address = 0x20'0000;
break;
}
Svc::CreateProcessParameter params{
.name = {},
.version = {},
.program_id = metadata.GetTitleID(),
.code_address = code_address + GetInteger(aslr_space_start),
.code_num_pages = static_cast<s32>(code_size / PageSize),
.flags = flag,
.reslimit = Svc::InvalidHandle,
.system_resource_num_pages = static_cast<s32>(metadata.GetSystemResourceSize() / PageSize),
};
// Set the process name.
const auto& name = metadata.GetName();
static_assert(sizeof(params.name) <= sizeof(name));
std::memcpy(params.name.data(), name.data(), sizeof(params.name));
// Initialize for application process.
R_TRY(this->Initialize(params, metadata.GetKernelCapabilities(), res_limit, pool,
aslr_space_start));
// Assign remaining properties.
m_is_hbl = is_hbl;
m_ideal_core_id = metadata.GetMainThreadCore();
// Set up emulation context.
this->InitializeInterfaces();
// We succeeded.
R_SUCCEED();
}
void KProcess::LoadModule(CodeSet code_set, KProcessAddress base_addr) {
const auto ReprotectSegment = [&](const CodeSet::Segment& segment,
Svc::MemoryPermission permission) {
m_page_table.SetProcessMemoryPermission(segment.addr + base_addr, segment.size, permission);
};
this->GetMemory().WriteBlock(base_addr, code_set.memory.data(), code_set.memory.size());
ReprotectSegment(code_set.CodeSegment(), Svc::MemoryPermission::ReadExecute);
ReprotectSegment(code_set.RODataSegment(), Svc::MemoryPermission::Read);
ReprotectSegment(code_set.DataSegment(), Svc::MemoryPermission::ReadWrite);
#ifdef HAS_NCE
if (Settings::IsNceEnabled()) {
auto& buffer = m_kernel.System().DeviceMemory().buffer;
const auto& code = code_set.CodeSegment();
const auto& patch = code_set.PatchSegment();
buffer.Protect(GetInteger(base_addr + code.addr), code.size, true, true, true);
buffer.Protect(GetInteger(base_addr + patch.addr), patch.size, true, true, true);
ReprotectSegment(code_set.PatchSegment(), Svc::MemoryPermission::None);
}
#endif
}
void KProcess::InitializeInterfaces() {
m_exclusive_monitor =
Core::MakeExclusiveMonitor(this->GetMemory(), Core::Hardware::NUM_CPU_CORES);
#ifdef HAS_NCE
if (this->Is64Bit() && Settings::IsNceEnabled()) {
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
m_arm_interfaces[i] = std::make_unique<Core::ArmNce>(m_kernel.System(), true, i);
}
} else
#endif
if (this->Is64Bit()) {
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
m_arm_interfaces[i] = std::make_unique<Core::ArmDynarmic64>(
m_kernel.System(), m_kernel.IsMulticore(), this,
static_cast<Core::DynarmicExclusiveMonitor&>(*m_exclusive_monitor), i);
}
} else {
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
m_arm_interfaces[i] = std::make_unique<Core::ArmDynarmic32>(
m_kernel.System(), m_kernel.IsMulticore(), this,
static_cast<Core::DynarmicExclusiveMonitor&>(*m_exclusive_monitor), i);
}
}
}
bool KProcess::InsertWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointType type) {
const auto watch{std::find_if(m_watchpoints.begin(), m_watchpoints.end(), [&](const auto& wp) {
return wp.type == DebugWatchpointType::None;
})};
if (watch == m_watchpoints.end()) {
return false;
}
watch->start_address = addr;
watch->end_address = addr + size;
watch->type = type;
for (KProcessAddress page = Common::AlignDown(GetInteger(addr), PageSize); page < addr + size;
page += PageSize) {
m_debug_page_refcounts[page]++;
this->GetMemory().MarkRegionDebug(page, PageSize, true);
}
return true;
}
bool KProcess::RemoveWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointType type) {
const auto watch{std::find_if(m_watchpoints.begin(), m_watchpoints.end(), [&](const auto& wp) {
return wp.start_address == addr && wp.end_address == addr + size && wp.type == type;
})};
if (watch == m_watchpoints.end()) {
return false;
}
watch->start_address = 0;
watch->end_address = 0;
watch->type = DebugWatchpointType::None;
for (KProcessAddress page = Common::AlignDown(GetInteger(addr), PageSize); page < addr + size;
page += PageSize) {
m_debug_page_refcounts[page]--;
if (!m_debug_page_refcounts[page]) {
this->GetMemory().MarkRegionDebug(page, PageSize, false);
}
}
return true;
}
void KProcess::GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback) {
for (auto& manager : m_dirty_memory_managers) {
manager.Gather(callback);
}
}
} // namespace Kernel