// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <atomic>
#include <condition_variable>
#include <mutex>
#include <span>
#include <string>
#include <utility>
#include <vector>
#include "common/intrusive_list.h"
#include "common/intrusive_red_black_tree.h"
#include "common/scratch_buffer.h"
#include "common/spin_lock.h"
#include "core/arm/arm_interface.h"
#include "core/hle/kernel/k_affinity_mask.h"
#include "core/hle/kernel/k_light_lock.h"
#include "core/hle/kernel/k_spin_lock.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/k_timer_task.h"
#include "core/hle/kernel/k_typed_address.h"
#include "core/hle/kernel/k_worker_task.h"
#include "core/hle/kernel/slab_helpers.h"
#include "core/hle/kernel/svc_common.h"
#include "core/hle/kernel/svc_types.h"
#include "core/hle/result.h"
namespace Common {
class Fiber;
}
namespace Core {
namespace Memory {
class Memory;
}
class System;
} // namespace Core
namespace Kernel {
class GlobalSchedulerContext;
class KernelCore;
class KProcess;
class KScheduler;
class KThreadQueue;
using KThreadFunction = KProcessAddress;
enum class ThreadType : u32 {
Main = 0,
Kernel = 1,
HighPriority = 2,
User = 3,
Dummy = 100, // Special thread type for emulation purposes only
};
DECLARE_ENUM_FLAG_OPERATORS(ThreadType);
enum class SuspendType : u32 {
Process = 0,
Thread = 1,
Debug = 2,
Backtrace = 3,
Init = 4,
Count,
};
enum class ThreadState : u16 {
Initialized = 0,
Waiting = 1,
Runnable = 2,
Terminated = 3,
SuspendShift = 4,
Mask = (1 << SuspendShift) - 1,
ProcessSuspended = (1 << (0 + SuspendShift)),
ThreadSuspended = (1 << (1 + SuspendShift)),
DebugSuspended = (1 << (2 + SuspendShift)),
BacktraceSuspended = (1 << (3 + SuspendShift)),
InitSuspended = (1 << (4 + SuspendShift)),
SuspendFlagMask = ((1 << 5) - 1) << SuspendShift,
};
DECLARE_ENUM_FLAG_OPERATORS(ThreadState);
enum class DpcFlag : u32 {
Terminating = (1 << 0),
Terminated = (1 << 1),
};
enum class ThreadWaitReasonForDebugging : u32 {
None, ///< Thread is not waiting
Sleep, ///< Thread is waiting due to a SleepThread SVC
IPC, ///< Thread is waiting for the reply from an IPC request
Synchronization, ///< Thread is waiting due to a WaitSynchronization SVC
ConditionVar, ///< Thread is waiting due to a WaitProcessWideKey SVC
Arbitration, ///< Thread is waiting due to a SignalToAddress/WaitForAddress SVC
Suspended, ///< Thread is waiting due to process suspension
};
enum class StepState : u32 {
NotStepping, ///< Thread is not currently stepping
StepPending, ///< Thread will step when next scheduled
StepPerformed, ///< Thread has stepped, waiting to be scheduled again
};
void SetCurrentThread(KernelCore& kernel, KThread* thread);
KThread* GetCurrentThreadPointer(KernelCore& kernel);
KThread& GetCurrentThread(KernelCore& kernel);
KProcess* GetCurrentProcessPointer(KernelCore& kernel);
KProcess& GetCurrentProcess(KernelCore& kernel);
s32 GetCurrentCoreId(KernelCore& kernel);
Core::Memory::Memory& GetCurrentMemory(KernelCore& kernel);
class KThread final : public KAutoObjectWithSlabHeapAndContainer<KThread, KWorkerTask>,
public Common::IntrusiveListBaseNode<KThread>,
public KTimerTask {
KERNEL_AUTOOBJECT_TRAITS(KThread, KSynchronizationObject);
private:
friend class KScheduler;
friend class KProcess;
public:
static constexpr s32 DefaultThreadPriority = 44;
static constexpr s32 IdleThreadPriority = Svc::LowestThreadPriority + 1;
static constexpr s32 DummyThreadPriority = Svc::LowestThreadPriority + 2;
explicit KThread(KernelCore& kernel);
~KThread() override;
public:
using WaiterList = Common::IntrusiveListBaseTraits<KThread>::ListType;
/**
* Gets the thread's current priority
* @return The current thread's priority
*/
s32 GetPriority() const {
return m_priority;
}
/**
* Sets the thread's current priority.
* @param priority The new priority.
*/
void SetPriority(s32 value) {
m_priority = value;
}
/**
* Gets the thread's nominal priority.
* @return The current thread's nominal priority.
*/
s32 GetBasePriority() const {
return m_base_priority;
}
/**
* Gets the thread's thread ID
* @return The thread's ID
*/
u64 GetThreadId() const {
return m_thread_id;
}
void ContinueIfHasKernelWaiters() {
if (GetNumKernelWaiters() > 0) {
Continue();
}
}
void SetBasePriority(s32 value);
Result Run();
void Exit();
Result Terminate();
ThreadState RequestTerminate();
u32 GetSuspendFlags() const {
return m_suspend_allowed_flags & m_suspend_request_flags;
}
bool IsSuspended() const {
return GetSuspendFlags() != 0;
}
bool IsSuspendRequested(SuspendType type) const {
return (m_suspend_request_flags &
(1U << (static_cast<u32>(ThreadState::SuspendShift) + static_cast<u32>(type)))) !=
0;
}
bool IsSuspendRequested() const {
return m_suspend_request_flags != 0;
}
void RequestSuspend(SuspendType type);
void Resume(SuspendType type);
void TrySuspend();
void UpdateState();
void Continue();
constexpr void SetSyncedIndex(s32 index) {
m_synced_index = index;
}
constexpr s32 GetSyncedIndex() const {
return m_synced_index;
}
constexpr void SetWaitResult(Result wait_res) {
m_wait_result = wait_res;
}
constexpr Result GetWaitResult() const {
return m_wait_result;
}
/*
* Returns the Thread Local Storage address of the current thread
* @returns Address of the thread's TLS
*/
KProcessAddress GetTlsAddress() const {
return m_tls_address;
}
/*
* Returns the value of the TPIDR_EL0 Read/Write system register for this thread.
* @returns The value of the TPIDR_EL0 register.
*/
u64 GetTpidrEl0() const {
return m_thread_context.tpidr;
}
/// Sets the value of the TPIDR_EL0 Read/Write system register for this thread.
void SetTpidrEl0(u64 value) {
m_thread_context.tpidr = value;
}
void CloneFpuStatus();
Svc::ThreadContext& GetContext() {
return m_thread_context;
}
const Svc::ThreadContext& GetContext() const {
return m_thread_context;
}
std::shared_ptr<Common::Fiber>& GetHostContext();
ThreadState GetState() const {
return m_thread_state.load(std::memory_order_relaxed) & ThreadState::Mask;
}
ThreadState GetRawState() const {
return m_thread_state.load(std::memory_order_relaxed);
}
void SetState(ThreadState state);
StepState GetStepState() const {
return m_step_state;
}
void SetStepState(StepState state) {
m_step_state = state;
}
s64 GetLastScheduledTick() const {
return m_last_scheduled_tick;
}
void SetLastScheduledTick(s64 tick) {
m_last_scheduled_tick = tick;
}
void AddCpuTime(s32 core_id, s64 amount) {
m_cpu_time += amount;
// TODO(bunnei): Debug kernels track per-core tick counts. Should we?
}
s64 GetCpuTime() const {
return m_cpu_time;
}
s32 GetActiveCore() const {
return m_core_id;
}
void SetActiveCore(s32 core) {
m_core_id = core;
}
s32 GetCurrentCore() const {
return m_current_core_id;
}
void SetCurrentCore(s32 core) {
m_current_core_id = core;
}
KProcess* GetOwnerProcess() {
return m_parent;
}
const KProcess* GetOwnerProcess() const {
return m_parent;
}
bool IsUserThread() const {
return m_parent != nullptr;
}
std::span<KSynchronizationObject*> GetSynchronizationObjectBuffer() {
return m_sync_object_buffer.sync_objects;
}
std::span<Handle> GetHandleBuffer() {
return {m_sync_object_buffer.handles.data() + Svc::ArgumentHandleCountMax,
Svc::ArgumentHandleCountMax};
}
u16 GetUserDisableCount() const;
void SetInterruptFlag();
void ClearInterruptFlag();
KThread* GetLockOwner() const;
const KAffinityMask& GetAffinityMask() const {
return m_physical_affinity_mask;
}
Result GetCoreMask(s32* out_ideal_core, u64* out_affinity_mask);
Result GetPhysicalCoreMask(s32* out_ideal_core, u64* out_affinity_mask);
Result SetCoreMask(s32 cpu_core_id, u64 v_affinity_mask);
Result SetActivity(Svc::ThreadActivity activity);
Result Sleep(s64 timeout);
s64 GetYieldScheduleCount() const {
return m_schedule_count;
}
void SetYieldScheduleCount(s64 count) {
m_schedule_count = count;
}
void WaitCancel();
bool IsWaitCancelled() const {
return m_wait_cancelled;
}
void ClearWaitCancelled() {
m_wait_cancelled = false;
}
bool IsCancellable() const {
return m_cancellable;
}
void SetCancellable() {
m_cancellable = true;
}
void ClearCancellable() {
m_cancellable = false;
}
bool IsTerminationRequested() const {
return m_termination_requested || GetRawState() == ThreadState::Terminated;
}
u64 GetId() const override {
return this->GetThreadId();
}
bool IsInitialized() const override {
return m_initialized;
}
uintptr_t GetPostDestroyArgument() const override {
return reinterpret_cast<uintptr_t>(m_parent) | (m_resource_limit_release_hint ? 1 : 0);
}
void Finalize() override;
bool IsSignaled() const override;
void OnTimer();
void DoWorkerTaskImpl();
static void PostDestroy(uintptr_t arg);
static Result InitializeDummyThread(KThread* thread, KProcess* owner);
static Result InitializeMainThread(Core::System& system, KThread* thread, s32 virt_core);
static Result InitializeIdleThread(Core::System& system, KThread* thread, s32 virt_core);
static Result InitializeHighPriorityThread(Core::System& system, KThread* thread,
KThreadFunction func, uintptr_t arg, s32 virt_core);
static Result InitializeUserThread(Core::System& system, KThread* thread, KThreadFunction func,
uintptr_t arg, KProcessAddress user_stack_top, s32 prio,
s32 virt_core, KProcess* owner);
static Result InitializeServiceThread(Core::System& system, KThread* thread,
std::function<void()>&& thread_func, s32 prio,
s32 virt_core, KProcess* owner);
public:
struct StackParameters {
u8 svc_permission[0x10];
std::atomic<u8> dpc_flags;
u8 current_svc_id;
bool is_calling_svc;
bool is_in_exception_handler;
bool is_pinned;
s32 disable_count;
KThread* cur_thread;
};
StackParameters& GetStackParameters() {
return m_stack_parameters;
}
const StackParameters& GetStackParameters() const {
return m_stack_parameters;
}
class QueueEntry {
public:
constexpr QueueEntry() = default;
constexpr void Initialize() {
m_prev = nullptr;
m_next = nullptr;
}
constexpr KThread* GetPrev() const {
return m_prev;
}
constexpr KThread* GetNext() const {
return m_next;
}
constexpr void SetPrev(KThread* thread) {
m_prev = thread;
}
constexpr void SetNext(KThread* thread) {
m_next = thread;
}
private:
KThread* m_prev{};
KThread* m_next{};
};
QueueEntry& GetPriorityQueueEntry(s32 core) {
return m_per_core_priority_queue_entry[core];
}
const QueueEntry& GetPriorityQueueEntry(s32 core) const {
return m_per_core_priority_queue_entry[core];
}
s32 GetDisableDispatchCount() const {
return this->GetStackParameters().disable_count;
}
void DisableDispatch() {
ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() >= 0);
this->GetStackParameters().disable_count++;
}
void EnableDispatch() {
ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() > 0);
this->GetStackParameters().disable_count--;
}
void Pin(s32 current_core);
void Unpin();
void SetInExceptionHandler() {
this->GetStackParameters().is_in_exception_handler = true;
}
void ClearInExceptionHandler() {
this->GetStackParameters().is_in_exception_handler = false;
}
bool IsInExceptionHandler() const {
return this->GetStackParameters().is_in_exception_handler;
}
void SetIsCallingSvc() {
this->GetStackParameters().is_calling_svc = true;
}
void ClearIsCallingSvc() {
this->GetStackParameters().is_calling_svc = false;
}
bool IsCallingSvc() const {
return this->GetStackParameters().is_calling_svc;
}
u8 GetSvcId() const {
return this->GetStackParameters().current_svc_id;
}
void RegisterDpc(DpcFlag flag) {
this->GetStackParameters().dpc_flags |= static_cast<u8>(flag);
}
void ClearDpc(DpcFlag flag) {
this->GetStackParameters().dpc_flags &= ~static_cast<u8>(flag);
}
u8 GetDpc() const {
return this->GetStackParameters().dpc_flags;
}
bool HasDpc() const {
return this->GetDpc() != 0;
}
void SetWaitReasonForDebugging(ThreadWaitReasonForDebugging reason) {
m_wait_reason_for_debugging = reason;
}
ThreadWaitReasonForDebugging GetWaitReasonForDebugging() const {
return m_wait_reason_for_debugging;
}
ThreadType GetThreadType() const {
return m_thread_type;
}
bool IsDummyThread() const {
return this->GetThreadType() == ThreadType::Dummy;
}
void AddWaiter(KThread* thread);
void RemoveWaiter(KThread* thread);
Result GetThreadContext3(Svc::ThreadContext* out);
KThread* RemoveUserWaiterByKey(bool* out_has_waiters, KProcessAddress key) {
return this->RemoveWaiterByKey(out_has_waiters, key, false);
}
KThread* RemoveKernelWaiterByKey(bool* out_has_waiters, KProcessAddress key) {
return this->RemoveWaiterByKey(out_has_waiters, key, true);
}
KProcessAddress GetAddressKey() const {
return m_address_key;
}
u32 GetAddressKeyValue() const {
return m_address_key_value;
}
bool GetIsKernelAddressKey() const {
return m_is_kernel_address_key;
}
//! NB: intentional deviation from official kernel.
//
// Separate SetAddressKey into user and kernel versions
// to cope with arbitrary host pointers making their way
// into things.
void SetUserAddressKey(KProcessAddress key, u32 val) {
ASSERT(m_waiting_lock_info == nullptr);
m_address_key = key;
m_address_key_value = val;
m_is_kernel_address_key = false;
}
void SetKernelAddressKey(KProcessAddress key) {
ASSERT(m_waiting_lock_info == nullptr);
m_address_key = key;
m_is_kernel_address_key = true;
}
void ClearWaitQueue() {
m_wait_queue = nullptr;
}
void BeginWait(KThreadQueue* queue);
void NotifyAvailable(KSynchronizationObject* signaled_object, Result wait_result);
void EndWait(Result wait_result);
void CancelWait(Result wait_result, bool cancel_timer_task);
s32 GetNumKernelWaiters() const {
return m_num_kernel_waiters;
}
u64 GetConditionVariableKey() const {
return m_condvar_key;
}
u64 GetAddressArbiterKey() const {
return m_condvar_key;
}
// Dummy threads (used for HLE host threads) cannot wait based on the guest scheduler, and
// therefore will not block on guest kernel synchronization primitives. These methods handle
// blocking as needed.
void RequestDummyThreadWait();
void DummyThreadBeginWait();
void DummyThreadEndWait();
uintptr_t GetArgument() const {
return m_argument;
}
KProcessAddress GetUserStackTop() const {
return m_stack_top;
}
public:
// TODO: This shouldn't be defined in kernel namespace
struct NativeExecutionParameters {
u64 tpidr_el0{};
u64 tpidrro_el0{};
void* native_context{};
std::atomic<u32> lock{1};
bool is_running{};
u32 magic{Common::MakeMagic('Y', 'U', 'Z', 'U')};
};
NativeExecutionParameters& GetNativeExecutionParameters() {
return m_native_execution_parameters;
}
private:
KThread* RemoveWaiterByKey(bool* out_has_waiters, KProcessAddress key,
bool is_kernel_address_key);
static constexpr size_t PriorityInheritanceCountMax = 10;
union SyncObjectBuffer {
std::array<KSynchronizationObject*, Svc::ArgumentHandleCountMax> sync_objects{};
std::array<Handle,
Svc::ArgumentHandleCountMax * (sizeof(KSynchronizationObject*) / sizeof(Handle))>
handles;
constexpr SyncObjectBuffer() {}
};
static_assert(sizeof(SyncObjectBuffer::sync_objects) == sizeof(SyncObjectBuffer::handles));
struct ConditionVariableComparator {
struct RedBlackKeyType {
u64 cv_key{};
s32 priority{};
constexpr u64 GetConditionVariableKey() const {
return cv_key;
}
constexpr s32 GetPriority() const {
return priority;
}
};
template <typename T>
requires(std::same_as<T, KThread> || std::same_as<T, RedBlackKeyType>)
static constexpr int Compare(const T& lhs, const KThread& rhs) {
const u64 l_key = lhs.GetConditionVariableKey();
const u64 r_key = rhs.GetConditionVariableKey();
if (l_key < r_key) {
// Sort first by key
return -1;
} else if (l_key == r_key && lhs.GetPriority() < rhs.GetPriority()) {
// And then by priority.
return -1;
} else {
return 1;
}
}
};
void AddWaiterImpl(KThread* thread);
void RemoveWaiterImpl(KThread* thread);
static void RestorePriority(KernelCore& kernel, KThread* thread);
void StartTermination();
void FinishTermination();
void IncreaseBasePriority(s32 priority);
Result Initialize(KThreadFunction func, uintptr_t arg, KProcessAddress user_stack_top, s32 prio,
s32 virt_core, KProcess* owner, ThreadType type);
static Result InitializeThread(KThread* thread, KThreadFunction func, uintptr_t arg,
KProcessAddress user_stack_top, s32 prio, s32 core,
KProcess* owner, ThreadType type,
std::function<void()>&& init_func);
// For core KThread implementation
Svc::ThreadContext m_thread_context{};
Common::IntrusiveListNode m_process_list_node;
Common::IntrusiveRedBlackTreeNode m_condvar_arbiter_tree_node{};
s32 m_priority{};
using ConditionVariableThreadTreeTraits =
Common::IntrusiveRedBlackTreeMemberTraitsDeferredAssert<
&KThread::m_condvar_arbiter_tree_node>;
using ConditionVariableThreadTree =
ConditionVariableThreadTreeTraits::TreeType<ConditionVariableComparator>;
private:
struct LockWithPriorityInheritanceComparator {
struct RedBlackKeyType {
s32 m_priority;
constexpr s32 GetPriority() const {
return m_priority;
}
};
template <typename T>
requires(std::same_as<T, KThread> || std::same_as<T, RedBlackKeyType>)
static constexpr int Compare(const T& lhs, const KThread& rhs) {
if (lhs.GetPriority() < rhs.GetPriority()) {
// Sort by priority.
return -1;
} else {
return 1;
}
}
};
static_assert(std::same_as<Common::RedBlackKeyType<LockWithPriorityInheritanceComparator, void>,
LockWithPriorityInheritanceComparator::RedBlackKeyType>);
using LockWithPriorityInheritanceThreadTreeTraits =
Common::IntrusiveRedBlackTreeMemberTraitsDeferredAssert<
&KThread::m_condvar_arbiter_tree_node>;
using LockWithPriorityInheritanceThreadTree =
ConditionVariableThreadTreeTraits::TreeType<LockWithPriorityInheritanceComparator>;
public:
class LockWithPriorityInheritanceInfo
: public KSlabAllocated<LockWithPriorityInheritanceInfo>,
public Common::IntrusiveListBaseNode<LockWithPriorityInheritanceInfo> {
public:
explicit LockWithPriorityInheritanceInfo(KernelCore&) {}
static LockWithPriorityInheritanceInfo* Create(KernelCore& kernel,
KProcessAddress address_key,
bool is_kernel_address_key) {
// Create a new lock info.
auto* new_lock = LockWithPriorityInheritanceInfo::Allocate(kernel);
ASSERT(new_lock != nullptr);
// Set the new lock's address key.
new_lock->m_address_key = address_key;
new_lock->m_is_kernel_address_key = is_kernel_address_key;
return new_lock;
}
void SetOwner(KThread* new_owner) {
// Set new owner.
m_owner = new_owner;
}
void AddWaiter(KThread* waiter) {
// Insert the waiter.
m_tree.insert(*waiter);
m_waiter_count++;
waiter->SetWaitingLockInfo(this);
}
bool RemoveWaiter(KThread* waiter) {
m_tree.erase(m_tree.iterator_to(*waiter));
waiter->SetWaitingLockInfo(nullptr);
return (--m_waiter_count) == 0;
}
KThread* GetHighestPriorityWaiter() {
return std::addressof(m_tree.front());
}
const KThread* GetHighestPriorityWaiter() const {
return std::addressof(m_tree.front());
}
LockWithPriorityInheritanceThreadTree& GetThreadTree() {
return m_tree;
}
const LockWithPriorityInheritanceThreadTree& GetThreadTree() const {
return m_tree;
}
KProcessAddress GetAddressKey() const {
return m_address_key;
}
bool GetIsKernelAddressKey() const {
return m_is_kernel_address_key;
}
KThread* GetOwner() const {
return m_owner;
}
u32 GetWaiterCount() const {
return m_waiter_count;
}
private:
LockWithPriorityInheritanceThreadTree m_tree{};
KProcessAddress m_address_key{};
KThread* m_owner{};
u32 m_waiter_count{};
bool m_is_kernel_address_key{};
};
void SetWaitingLockInfo(LockWithPriorityInheritanceInfo* lock) {
m_waiting_lock_info = lock;
}
LockWithPriorityInheritanceInfo* GetWaitingLockInfo() {
return m_waiting_lock_info;
}
void AddHeldLock(LockWithPriorityInheritanceInfo* lock_info);
LockWithPriorityInheritanceInfo* FindHeldLock(KProcessAddress address_key,
bool is_kernel_address_key);
private:
using LockWithPriorityInheritanceInfoList =
Common::IntrusiveListBaseTraits<LockWithPriorityInheritanceInfo>::ListType;
ConditionVariableThreadTree* m_condvar_tree{};
u64 m_condvar_key{};
u64 m_virtual_affinity_mask{};
KAffinityMask m_physical_affinity_mask{};
u64 m_thread_id{};
std::atomic<s64> m_cpu_time{};
KProcessAddress m_address_key{};
KProcess* m_parent{};
KVirtualAddress m_kernel_stack_top{};
u32* m_light_ipc_data{};
KProcessAddress m_tls_address{};
KLightLock m_activity_pause_lock;
SyncObjectBuffer m_sync_object_buffer{};
s64 m_schedule_count{};
s64 m_last_scheduled_tick{};
std::array<QueueEntry, Core::Hardware::NUM_CPU_CORES> m_per_core_priority_queue_entry{};
KThreadQueue* m_wait_queue{};
LockWithPriorityInheritanceInfoList m_held_lock_info_list{};
LockWithPriorityInheritanceInfo* m_waiting_lock_info{};
WaiterList m_pinned_waiter_list{};
u32 m_address_key_value{};
u32 m_suspend_request_flags{};
u32 m_suspend_allowed_flags{};
s32 m_synced_index{};
Result m_wait_result{ResultSuccess};
s32 m_base_priority{};
s32 m_physical_ideal_core_id{};
s32 m_virtual_ideal_core_id{};
s32 m_num_kernel_waiters{};
s32 m_current_core_id{};
s32 m_core_id{};
KAffinityMask m_original_physical_affinity_mask{};
s32 m_original_physical_ideal_core_id{};
s32 m_num_core_migration_disables{};
std::atomic<ThreadState> m_thread_state{};
std::atomic<bool> m_termination_requested{};
bool m_wait_cancelled{};
bool m_cancellable{};
bool m_signaled{};
bool m_initialized{};
bool m_debug_attached{};
s8 m_priority_inheritance_count{};
bool m_resource_limit_release_hint{};
bool m_is_kernel_address_key{};
StackParameters m_stack_parameters{};
Common::SpinLock m_context_guard{};
// For emulation
std::shared_ptr<Common::Fiber> m_host_context{};
ThreadType m_thread_type{};
StepState m_step_state{};
bool m_dummy_thread_runnable{true};
std::mutex m_dummy_thread_mutex{};
std::condition_variable m_dummy_thread_cv{};
// For debugging
std::vector<KSynchronizationObject*> m_wait_objects_for_debugging{};
KProcessAddress m_mutex_wait_address_for_debugging{};
ThreadWaitReasonForDebugging m_wait_reason_for_debugging{};
uintptr_t m_argument{};
KProcessAddress m_stack_top{};
NativeExecutionParameters m_native_execution_parameters{};
public:
using ConditionVariableThreadTreeType = ConditionVariableThreadTree;
void SetConditionVariable(ConditionVariableThreadTree* tree, KProcessAddress address,
u64 cv_key, u32 value) {
ASSERT(m_waiting_lock_info == nullptr);
m_condvar_tree = tree;
m_condvar_key = cv_key;
m_address_key = address;
m_address_key_value = value;
m_is_kernel_address_key = false;
}
void ClearConditionVariable() {
m_condvar_tree = nullptr;
}
bool IsWaitingForConditionVariable() const {
return m_condvar_tree != nullptr;
}
void SetAddressArbiter(ConditionVariableThreadTree* tree, u64 address) {
ASSERT(m_waiting_lock_info == nullptr);
m_condvar_tree = tree;
m_condvar_key = address;
}
void ClearAddressArbiter() {
m_condvar_tree = nullptr;
}
bool IsWaitingForAddressArbiter() const {
return m_condvar_tree != nullptr;
}
ConditionVariableThreadTree* GetConditionVariableTree() const {
return m_condvar_tree;
}
};
class KScopedDisableDispatch {
public:
explicit KScopedDisableDispatch(KernelCore& kernel) : m_kernel{kernel} {
// If we are shutting down the kernel, none of this is relevant anymore.
if (m_kernel.IsShuttingDown()) {
return;
}
GetCurrentThread(kernel).DisableDispatch();
}
~KScopedDisableDispatch();
private:
KernelCore& m_kernel;
};
inline void KTimerTask::OnTimer() {
static_cast<KThread*>(this)->OnTimer();
}
} // namespace Kernel