// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <span>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
#include "shader_recompiler/backend/spirv/emit_spirv.h"
#include "shader_recompiler/frontend/ir/basic_block.h"
#include "shader_recompiler/frontend/ir/microinstruction.h"
#include "shader_recompiler/frontend/ir/program.h"
namespace Shader::Backend::SPIRV {
namespace {
template <class Func>
struct FuncTraits : FuncTraits<Func> {};
template <class ReturnType_, class... Args>
struct FuncTraits<ReturnType_ (*)(Args...)> {
using ReturnType = ReturnType_;
static constexpr size_t NUM_ARGS = sizeof...(Args);
template <size_t I>
using ArgType = std::tuple_element_t<I, std::tuple<Args...>>;
};
template <auto func, typename... Args>
void SetDefinition(EmitContext& ctx, IR::Inst* inst, Args... args) {
const Id forward_id{inst->Definition<Id>()};
const bool has_forward_id{Sirit::ValidId(forward_id)};
Id current_id{};
if (has_forward_id) {
current_id = ctx.ExchangeCurrentId(forward_id);
}
const Id new_id{func(ctx, std::forward<Args>(args)...)};
if (has_forward_id) {
ctx.ExchangeCurrentId(current_id);
} else {
inst->SetDefinition<Id>(new_id);
}
}
template <typename ArgType>
ArgType Arg(EmitContext& ctx, const IR::Value& arg) {
if constexpr (std::is_same_v<ArgType, Id>) {
return ctx.Def(arg);
} else if constexpr (std::is_same_v<ArgType, const IR::Value&>) {
return arg;
} else if constexpr (std::is_same_v<ArgType, u32>) {
return arg.U32();
} else if constexpr (std::is_same_v<ArgType, IR::Block*>) {
return arg.Label();
} else if constexpr (std::is_same_v<ArgType, IR::Attribute>) {
return arg.Attribute();
} else if constexpr (std::is_same_v<ArgType, IR::Reg>) {
return arg.Reg();
}
}
template <auto func, bool is_first_arg_inst, size_t... I>
void Invoke(EmitContext& ctx, IR::Inst* inst, std::index_sequence<I...>) {
using Traits = FuncTraits<decltype(func)>;
if constexpr (std::is_same_v<Traits::ReturnType, Id>) {
if constexpr (is_first_arg_inst) {
SetDefinition<func>(ctx, inst, inst, Arg<Traits::ArgType<I + 2>>(ctx, inst->Arg(I))...);
} else {
SetDefinition<func>(ctx, inst, Arg<Traits::ArgType<I + 1>>(ctx, inst->Arg(I))...);
}
} else {
if constexpr (is_first_arg_inst) {
func(ctx, inst, Arg<Traits::ArgType<I + 2>>(ctx, inst->Arg(I))...);
} else {
func(ctx, Arg<Traits::ArgType<I + 1>>(ctx, inst->Arg(I))...);
}
}
}
template <auto func>
void Invoke(EmitContext& ctx, IR::Inst* inst) {
using Traits = FuncTraits<decltype(func)>;
static_assert(Traits::NUM_ARGS >= 1, "Insufficient arguments");
if constexpr (Traits::NUM_ARGS == 1) {
Invoke<func, false>(ctx, inst, std::make_index_sequence<0>{});
} else {
using FirstArgType = typename Traits::template ArgType<1>;
static constexpr bool is_first_arg_inst = std::is_same_v<FirstArgType, IR::Inst*>;
using Indices = std::make_index_sequence<Traits::NUM_ARGS - (is_first_arg_inst ? 2 : 1)>;
Invoke<func, is_first_arg_inst>(ctx, inst, Indices{});
}
}
void EmitInst(EmitContext& ctx, IR::Inst* inst) {
switch (inst->Opcode()) {
#define OPCODE(name, result_type, ...) \
case IR::Opcode::name: \
return Invoke<&Emit##name>(ctx, inst);
#include "shader_recompiler/frontend/ir/opcodes.inc"
#undef OPCODE
}
throw LogicError("Invalid opcode {}", inst->Opcode());
}
Id TypeId(const EmitContext& ctx, IR::Type type) {
switch (type) {
case IR::Type::U1:
return ctx.U1;
case IR::Type::U32:
return ctx.U32[1];
default:
throw NotImplementedException("Phi node type {}", type);
}
}
Id DefineMain(EmitContext& ctx, IR::Program& program) {
const Id void_function{ctx.TypeFunction(ctx.void_id)};
const Id main{ctx.OpFunction(ctx.void_id, spv::FunctionControlMask::MaskNone, void_function)};
for (IR::Block* const block : program.blocks) {
ctx.AddLabel(block->Definition<Id>());
for (IR::Inst& inst : block->Instructions()) {
EmitInst(ctx, &inst);
}
}
ctx.OpFunctionEnd();
return main;
}
void DefineEntryPoint(const IR::Program& program, EmitContext& ctx, Id main) {
const std::span interfaces(ctx.interfaces.data(), ctx.interfaces.size());
spv::ExecutionModel execution_model{};
switch (program.stage) {
case Shader::Stage::Compute: {
const std::array<u32, 3> workgroup_size{program.workgroup_size};
execution_model = spv::ExecutionModel::GLCompute;
ctx.AddExecutionMode(main, spv::ExecutionMode::LocalSize, workgroup_size[0],
workgroup_size[1], workgroup_size[2]);
break;
}
case Shader::Stage::VertexB:
execution_model = spv::ExecutionModel::Vertex;
break;
case Shader::Stage::Fragment:
execution_model = spv::ExecutionModel::Fragment;
ctx.AddExecutionMode(main, spv::ExecutionMode::OriginUpperLeft);
if (program.info.stores_frag_depth) {
ctx.AddExecutionMode(main, spv::ExecutionMode::DepthReplacing);
}
break;
default:
throw NotImplementedException("Stage {}", program.stage);
}
ctx.AddEntryPoint(execution_model, main, "main", interfaces);
}
void SetupDenormControl(const Profile& profile, const IR::Program& program, EmitContext& ctx,
Id main_func) {
const Info& info{program.info};
if (info.uses_fp32_denorms_flush && info.uses_fp32_denorms_preserve) {
// LOG_ERROR(HW_GPU, "Fp32 denorm flush and preserve on the same shader");
} else if (info.uses_fp32_denorms_flush) {
if (profile.support_fp32_denorm_flush) {
ctx.AddCapability(spv::Capability::DenormFlushToZero);
ctx.AddExecutionMode(main_func, spv::ExecutionMode::DenormFlushToZero, 32U);
} else {
// Drivers will most likely flush denorms by default, no need to warn
}
} else if (info.uses_fp32_denorms_preserve) {
if (profile.support_fp32_denorm_preserve) {
ctx.AddCapability(spv::Capability::DenormPreserve);
ctx.AddExecutionMode(main_func, spv::ExecutionMode::DenormPreserve, 32U);
} else {
// LOG_WARNING(HW_GPU, "Fp32 denorm preserve used in shader without host support");
}
}
if (!profile.support_separate_denorm_behavior) {
// No separate denorm behavior
return;
}
if (info.uses_fp16_denorms_flush && info.uses_fp16_denorms_preserve) {
// LOG_ERROR(HW_GPU, "Fp16 denorm flush and preserve on the same shader");
} else if (info.uses_fp16_denorms_flush) {
if (profile.support_fp16_denorm_flush) {
ctx.AddCapability(spv::Capability::DenormFlushToZero);
ctx.AddExecutionMode(main_func, spv::ExecutionMode::DenormFlushToZero, 16U);
} else {
// Same as fp32, no need to warn as most drivers will flush by default
}
} else if (info.uses_fp16_denorms_preserve) {
if (profile.support_fp16_denorm_preserve) {
ctx.AddCapability(spv::Capability::DenormPreserve);
ctx.AddExecutionMode(main_func, spv::ExecutionMode::DenormPreserve, 16U);
} else {
// LOG_WARNING(HW_GPU, "Fp16 denorm preserve used in shader without host support");
}
}
}
void SetupSignedNanCapabilities(const Profile& profile, const IR::Program& program,
EmitContext& ctx, Id main_func) {
if (program.info.uses_fp16 && profile.support_fp16_signed_zero_nan_preserve) {
ctx.AddCapability(spv::Capability::SignedZeroInfNanPreserve);
ctx.AddExecutionMode(main_func, spv::ExecutionMode::SignedZeroInfNanPreserve, 16U);
}
if (profile.support_fp32_signed_zero_nan_preserve) {
ctx.AddCapability(spv::Capability::SignedZeroInfNanPreserve);
ctx.AddExecutionMode(main_func, spv::ExecutionMode::SignedZeroInfNanPreserve, 32U);
}
if (program.info.uses_fp64 && profile.support_fp64_signed_zero_nan_preserve) {
ctx.AddCapability(spv::Capability::SignedZeroInfNanPreserve);
ctx.AddExecutionMode(main_func, spv::ExecutionMode::SignedZeroInfNanPreserve, 64U);
}
}
void SetupCapabilities(const Profile& profile, const Info& info, EmitContext& ctx) {
if (info.uses_sampled_1d) {
ctx.AddCapability(spv::Capability::Sampled1D);
}
if (info.uses_sparse_residency) {
ctx.AddCapability(spv::Capability::SparseResidency);
}
if (info.uses_demote_to_helper_invocation) {
ctx.AddExtension("SPV_EXT_demote_to_helper_invocation");
ctx.AddCapability(spv::Capability::DemoteToHelperInvocationEXT);
}
if (info.stores_viewport_index) {
ctx.AddCapability(spv::Capability::MultiViewport);
if (profile.support_viewport_index_layer_non_geometry &&
ctx.stage == Shader::Stage::VertexB) {
ctx.AddExtension("SPV_EXT_shader_viewport_index_layer");
ctx.AddCapability(spv::Capability::ShaderViewportIndexLayerEXT);
} else {
ctx.ignore_viewport_layer = true;
}
}
if (!profile.support_vertex_instance_id && (info.loads_instance_id || info.loads_vertex_id)) {
ctx.AddExtension("SPV_KHR_shader_draw_parameters");
ctx.AddCapability(spv::Capability::DrawParameters);
}
if ((info.uses_subgroup_vote || info.uses_subgroup_invocation_id) && profile.support_vote) {
ctx.AddExtension("SPV_KHR_shader_ballot");
ctx.AddCapability(spv::Capability::SubgroupBallotKHR);
if (!profile.warp_size_potentially_larger_than_guest) {
// vote ops are only used when not taking the long path
ctx.AddExtension("SPV_KHR_subgroup_vote");
ctx.AddCapability(spv::Capability::SubgroupVoteKHR);
}
}
// TODO: Track this usage
ctx.AddCapability(spv::Capability::ImageGatherExtended);
ctx.AddCapability(spv::Capability::ImageQuery);
}
Id PhiArgDef(EmitContext& ctx, IR::Inst* inst, size_t index) {
// Phi nodes can have forward declarations, if an argument is not defined provide a forward
// declaration of it. Invoke will take care of giving it the right definition when it's
// actually defined.
const IR::Value arg{inst->Arg(index)};
if (arg.IsImmediate()) {
// Let the context handle immediate definitions, as it already knows how
return ctx.Def(arg);
}
IR::Inst* const arg_inst{arg.InstRecursive()};
if (const Id def{arg_inst->Definition<Id>()}; Sirit::ValidId(def)) {
// Return the current definition if it exists
return def;
}
if (arg_inst == inst) {
// This is a self referencing phi node
// Self-referencing definition will be set by the caller, so just grab the current id
return ctx.CurrentId();
}
// If it hasn't been defined and it's not a self reference, get a forward declaration
const Id def{ctx.ForwardDeclarationId()};
arg_inst->SetDefinition<Id>(def);
return def;
}
} // Anonymous namespace
std::vector<u32> EmitSPIRV(const Profile& profile, IR::Program& program, u32& binding) {
EmitContext ctx{profile, program, binding};
const Id main{DefineMain(ctx, program)};
DefineEntryPoint(program, ctx, main);
if (profile.support_float_controls) {
ctx.AddExtension("SPV_KHR_float_controls");
SetupDenormControl(profile, program, ctx, main);
SetupSignedNanCapabilities(profile, program, ctx, main);
}
SetupCapabilities(profile, program.info, ctx);
return ctx.Assemble();
}
Id EmitPhi(EmitContext& ctx, IR::Inst* inst) {
const size_t num_args{inst->NumArgs()};
boost::container::small_vector<Id, 32> operands;
operands.reserve(num_args * 2);
for (size_t index = 0; index < num_args; ++index) {
operands.push_back(PhiArgDef(ctx, inst, index));
operands.push_back(inst->PhiBlock(index)->Definition<Id>());
}
// The type of a phi instruction is stored in its flags
const Id result_type{TypeId(ctx, inst->Flags<IR::Type>())};
return ctx.OpPhi(result_type, std::span(operands.data(), operands.size()));
}
void EmitVoid(EmitContext&) {}
Id EmitIdentity(EmitContext& ctx, const IR::Value& value) {
if (const Id id = ctx.Def(value); Sirit::ValidId(id)) {
return id;
}
const Id def{ctx.ForwardDeclarationId()};
value.InstRecursive()->SetDefinition<Id>(def);
return def;
}
void EmitGetZeroFromOp(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitGetSignFromOp(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitGetCarryFromOp(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitGetOverflowFromOp(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitGetSparseFromOp(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitGetInBoundsFromOp(EmitContext&) {
throw LogicError("Unreachable instruction");
}
} // namespace Shader::Backend::SPIRV