diff options
Diffstat (limited to 'src/core/hw/y2r.cpp')
-rw-r--r-- | src/core/hw/y2r.cpp | 369 |
1 files changed, 369 insertions, 0 deletions
diff --git a/src/core/hw/y2r.cpp b/src/core/hw/y2r.cpp new file mode 100644 index 000000000..5b7fb39e1 --- /dev/null +++ b/src/core/hw/y2r.cpp @@ -0,0 +1,369 @@ +// Copyright 2015 Citra Emulator Project +// Licensed under GPLv2 or any later version +// Refer to the license.txt file included. + +#include <array> +#include <numeric> + +#include "common/assert.h" +#include "common/color.h" +#include "common/common_types.h" +#include "common/math_util.h" +#include "common/vector_math.h" + +#include "core/hle/service/y2r_u.h" +#include "core/memory.h" + +namespace HW { +namespace Y2R { + +using namespace Y2R_U; + +static const size_t MAX_TILES = 1024 / 8; +static const size_t TILE_SIZE = 8 * 8; +using ImageTile = std::array<u32, TILE_SIZE>; + +/// Converts a image strip from the source YUV format into individual 8x8 RGB32 tiles. +static void ConvertYUVToRGB(InputFormat input_format, + const u8* input_Y, const u8* input_U, const u8* input_V, ImageTile output[], + unsigned int width, unsigned int height, const CoefficientSet& coefficients) { + + for (unsigned int y = 0; y < height; ++y) { + for (unsigned int x = 0; x < width; ++x) { + s32 Y, U, V; + switch (input_format) { + case InputFormat::YUV422_Indiv8: + case InputFormat::YUV422_Indiv16: + Y = input_Y[y * width + x]; + U = input_U[(y * width + x) / 2]; + V = input_V[(y * width + x) / 2]; + break; + case InputFormat::YUV420_Indiv8: + case InputFormat::YUV420_Indiv16: + Y = input_Y[y * width + x]; + U = input_U[((y / 2) * width + x) / 2]; + V = input_V[((y / 2) * width + x) / 2]; + break; + case InputFormat::YUYV422_Interleaved: + Y = input_Y[(y * width + x) * 2]; + U = input_Y[(y * width + (x / 2) * 2) * 2 + 1]; + V = input_Y[(y * width + (x / 2) * 2) * 2 + 3]; + break; + } + + // This conversion process is bit-exact with hardware, as far as could be tested. + auto& c = coefficients; + s32 cY = c[0]*Y; + + s32 r = cY + c[1]*V; + s32 g = cY - c[3]*U - c[2]*V; + s32 b = cY + c[4]*U; + + const s32 rounding_offset = 0x18; + r = (r >> 3) + c[5] + rounding_offset; + g = (g >> 3) + c[6] + rounding_offset; + b = (b >> 3) + c[7] + rounding_offset; + + unsigned int tile = x / 8; + unsigned int tile_x = x % 8; + u32* out = &output[tile][y * 8 + tile_x]; + + using MathUtil::Clamp; + *out = ((u32)Clamp(r >> 5, 0, 0xFF) << 24) | + ((u32)Clamp(g >> 5, 0, 0xFF) << 16) | + ((u32)Clamp(b >> 5, 0, 0xFF) << 8); + } + } +} + +/// Simulates an incoming CDMA transfer. The N parameter is used to automatically convert 16-bit formats to 8-bit. +template <size_t N> +static void ReceiveData(u8* output, ConversionBuffer& buf, size_t amount_of_data) { + const u8* input = Memory::GetPointer(buf.address); + + size_t output_unit = buf.transfer_unit / N; + ASSERT(amount_of_data % output_unit == 0); + + while (amount_of_data > 0) { + for (size_t i = 0; i < output_unit; ++i) { + output[i] = input[i * N]; + } + + output += output_unit; + input += buf.transfer_unit + buf.gap; + + buf.address += buf.transfer_unit + buf.gap; + buf.image_size -= buf.transfer_unit; + amount_of_data -= output_unit; + } +} + +/// Convert intermediate RGB32 format to the final output format while simulating an outgoing CDMA transfer. +static void SendData(const u32* input, ConversionBuffer& buf, int amount_of_data, + OutputFormat output_format, u8 alpha) { + + u8* output = Memory::GetPointer(buf.address); + + while (amount_of_data > 0) { + u8* unit_end = output + buf.transfer_unit; + while (output < unit_end) { + u32 color = *input++; + Math::Vec4<u8> col_vec{ + (color >> 24) & 0xFF, (color >> 16) & 0xFF, (color >> 8) & 0xFF, alpha, + }; + + switch (output_format) { + case OutputFormat::RGBA8: + Color::EncodeRGBA8(col_vec, output); + output += 4; + break; + case OutputFormat::RGB8: + Color::EncodeRGB8(col_vec, output); + output += 3; + break; + case OutputFormat::RGB5A1: + Color::EncodeRGB5A1(col_vec, output); + output += 2; + break; + case OutputFormat::RGB565: + Color::EncodeRGB565(col_vec, output); + output += 2; + break; + } + + amount_of_data -= 1; + } + + output += buf.gap; + buf.address += buf.transfer_unit + buf.gap; + buf.image_size -= buf.transfer_unit; + } +} + +static const u8 linear_lut[64] = { + 0, 1, 2, 3, 4, 5, 6, 7, + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, +}; + +static const u8 morton_lut[64] = { + 0, 1, 4, 5, 16, 17, 20, 21, + 2, 3, 6, 7, 18, 19, 22, 23, + 8, 9, 12, 13, 24, 25, 28, 29, + 10, 11, 14, 15, 26, 27, 30, 31, + 32, 33, 36, 37, 48, 49, 52, 53, + 34, 35, 38, 39, 50, 51, 54, 55, + 40, 41, 44, 45, 56, 57, 60, 61, + 42, 43, 46, 47, 58, 59, 62, 63, +}; + +static void RotateTile0(const ImageTile& input, ImageTile& output, int height, const u8 out_map[64]) { + for (int i = 0; i < height * 8; ++i) { + output[out_map[i]] = input[i]; + } +} + +static void RotateTile90(const ImageTile& input, ImageTile& output, int height, const u8 out_map[64]) { + int out_i = 0; + for (int x = 0; x < 8; ++x) { + for (int y = height - 1; y >= 0; --y) { + output[out_map[out_i++]] = input[y * 8 + x]; + } + } +} + +static void RotateTile180(const ImageTile& input, ImageTile& output, int height, const u8 out_map[64]) { + int out_i = 0; + for (int i = height * 8 - 1; i >= 0; --i) { + output[out_map[out_i++]] = input[i]; + } +} + +static void RotateTile270(const ImageTile& input, ImageTile& output, int height, const u8 out_map[64]) { + int out_i = 0; + for (int x = 8-1; x >= 0; --x) { + for (int y = 0; y < height; ++y) { + output[out_map[out_i++]] = input[y * 8 + x]; + } + } +} + +static void WriteTileToOutput(u32* output, const ImageTile& tile, int height, int line_stride) { + for (int y = 0; y < height; ++y) { + for (int x = 0; x < 8; ++x) { + output[y * line_stride + x] = tile[y * 8 + x]; + } + } +} + +/** + * Performs a Y2R colorspace conversion. + * + * The Y2R hardware implements hardware-accelerated YUV to RGB colorspace conversions. It is most + * commonly used for video playback or to display camera input to the screen. + * + * The conversion process is quite configurable, and can be divided in distinct steps. From + * observation, it appears that the hardware buffers a single 8-pixel tall strip of image data + * internally and converts it in one go before writing to the output and loading the next strip. + * + * The steps taken to convert one strip of image data are: + * + * - The hardware receives data via CDMA (http://3dbrew.org/wiki/Corelink_DMA_Engines), which is + * presumably stored in one or more internal buffers. This process can be done in several separate + * transfers, as long as they don't exceed the size of the internal image buffer. This allows + * flexibility in input strides. + * - The input data is decoded into a YUV tuple. Several formats are suported, see the `InputFormat` + * enum. + * - The YUV tuple is converted, using fixed point calculations, to RGB. This step can be configured + * using a set of coefficients to support different colorspace standards. See `CoefficientSet`. + * - The strip can be optionally rotated 90, 180 or 270 degrees. Since each strip is processed + * independently, this notably rotates each *strip*, not the entire image. This means that for 90 + * or 270 degree rotations, the output will be in terms of several 8 x height images, and for any + * non-zero rotation the strips will have to be re-arranged so that the parts of the image will + * not be shuffled together. This limitation makes this a feature of somewhat dubious utility. 90 + * or 270 degree rotations in images with non-even height don't seem to work properly. + * - The data is converted to the output RGB format. See the `OutputFormat` enum. + * - The data can be output either linearly line-by-line or in the swizzled 8x8 tile format used by + * the PICA. This is decided by the `BlockAlignment` enum. If 8x8 alignment is used, then the + * image must have a height divisible by 8. The image width must always be divisible by 8. + * - The final data is then CDMAed out to main memory and the next image strip is processed. This + * offers the same flexibility as the input stage. + * + * In this implementation, to avoid the combinatorial explosion of parameter combinations, common + * intermediate formats are used and where possible tables or parameters are used instead of + * diverging code paths to keep the amount of branches in check. Some steps are also merged to + * increase efficiency. + * + * Output for all valid settings combinations matches hardware, however output in some edge-cases + * differs: + * + * - `Block8x8` alignment with non-mod8 height produces different garbage patterns on the last + * strip, especially when combined with rotation. + * - Hardware, when using `Linear` alignment with a non-even height and 90 or 270 degree rotation + * produces misaligned output on the last strip. This implmentation produces output with the + * correct "expected" alignment. + * + * Hardware behaves strangely (doesn't fire the completion interrupt, for example) in these cases, + * so they are believed to be invalid configurations anyway. + */ +void PerformConversion(ConversionConfiguration& cvt) { + ASSERT(cvt.input_line_width % 8 == 0); + ASSERT(cvt.block_alignment != BlockAlignment::Block8x8 || cvt.input_lines % 8 == 0); + // Tiles per row + size_t num_tiles = cvt.input_line_width / 8; + ASSERT(num_tiles < MAX_TILES); + + // Buffer used as a CDMA source/target. + std::unique_ptr<u8[]> data_buffer(new u8[cvt.input_line_width * 8 * 4]); + // Intermediate storage for decoded 8x8 image tiles. Always stored as RGB32. + std::unique_ptr<ImageTile[]> tiles(new ImageTile[num_tiles]); + ImageTile tmp_tile; + + // LUT used to remap writes to a tile. Used to allow linear or swizzled output without + // requiring two different code paths. + const u8* tile_remap; + switch (cvt.block_alignment) { + case BlockAlignment::Linear: + tile_remap = linear_lut; break; + case BlockAlignment::Block8x8: + tile_remap = morton_lut; break; + } + + for (unsigned int y = 0; y < cvt.input_lines; y += 8) { + unsigned int row_height = std::min(cvt.input_lines - y, 8u); + + // Total size in pixels of incoming data required for this strip. + const size_t row_data_size = row_height * cvt.input_line_width; + + u8* input_Y = data_buffer.get(); + u8* input_U = input_Y + 8 * cvt.input_line_width; + u8* input_V = input_U + 8 * cvt.input_line_width / 2; + + switch (cvt.input_format) { + case InputFormat::YUV422_Indiv8: + ReceiveData<1>(input_Y, cvt.src_Y, row_data_size); + ReceiveData<1>(input_U, cvt.src_U, row_data_size / 2); + ReceiveData<1>(input_V, cvt.src_V, row_data_size / 2); + break; + case InputFormat::YUV420_Indiv8: + ReceiveData<1>(input_Y, cvt.src_Y, row_data_size); + ReceiveData<1>(input_U, cvt.src_U, row_data_size / 4); + ReceiveData<1>(input_V, cvt.src_V, row_data_size / 4); + break; + case InputFormat::YUV422_Indiv16: + ReceiveData<2>(input_Y, cvt.src_Y, row_data_size); + ReceiveData<2>(input_U, cvt.src_U, row_data_size / 2); + ReceiveData<2>(input_V, cvt.src_V, row_data_size / 2); + break; + case InputFormat::YUV420_Indiv16: + ReceiveData<2>(input_Y, cvt.src_Y, row_data_size); + ReceiveData<2>(input_U, cvt.src_U, row_data_size / 4); + ReceiveData<2>(input_V, cvt.src_V, row_data_size / 4); + break; + case InputFormat::YUYV422_Interleaved: + input_U = nullptr; + input_V = nullptr; + ReceiveData<1>(input_Y, cvt.src_YUYV, row_data_size * 2); + break; + } + + // Note(yuriks): If additional optimization is required, input_format can be moved to a + // template parameter, so that its dispatch can be moved to outside the inner loop. + ConvertYUVToRGB(cvt.input_format, input_Y, input_U, input_V, tiles.get(), + cvt.input_line_width, row_height, cvt.coefficients); + + u32* output_buffer = reinterpret_cast<u32*>(data_buffer.get()); + + for (int i = 0; i < num_tiles; ++i) { + int image_strip_width, output_stride; + + switch (cvt.rotation) { + case Rotation::None: + RotateTile0(tiles[i], tmp_tile, row_height, tile_remap); + image_strip_width = cvt.input_line_width; + output_stride = 8; + break; + case Rotation::Clockwise_90: + RotateTile90(tiles[i], tmp_tile, row_height, tile_remap); + image_strip_width = 8; + output_stride = 8 * row_height; + break; + case Rotation::Clockwise_180: + // For 180 and 270 degree rotations we also invert the order of tiles in the strip, + // since the rotates are done individually on each tile. + RotateTile180(tiles[num_tiles - i - 1], tmp_tile, row_height, tile_remap); + image_strip_width = cvt.input_line_width; + output_stride = 8; + break; + case Rotation::Clockwise_270: + RotateTile270(tiles[num_tiles - i - 1], tmp_tile, row_height, tile_remap); + image_strip_width = 8; + output_stride = 8 * row_height; + break; + } + + switch (cvt.block_alignment) { + case BlockAlignment::Linear: + WriteTileToOutput(output_buffer, tmp_tile, row_height, image_strip_width); + output_buffer += output_stride; + break; + case BlockAlignment::Block8x8: + WriteTileToOutput(output_buffer, tmp_tile, 8, 8); + output_buffer += TILE_SIZE; + break; + } + } + + // Note(yuriks): If additional optimization is required, output_format can be moved to a + // template parameter, so that its dispatch can be moved to outside the inner loop. + SendData(reinterpret_cast<u32*>(data_buffer.get()), cvt.dst, (int)row_data_size, cvt.output_format, (u8)cvt.alpha); + } +} + +} +} |