summaryrefslogtreecommitdiffstats
path: root/src/core/core_timing.cpp
blob: 3ca265b4f2af523d9124ae9d138284ae4adf98d6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.

#include "core/core_timing.h"

#include <algorithm>
#include <mutex>
#include <string>
#include <tuple>

#include "common/assert.h"
#include "common/thread.h"
#include "core/core_timing_util.h"

namespace Core::Timing {

constexpr int MAX_SLICE_LENGTH = 10000;

struct CoreTiming::Event {
    s64 time;
    u64 fifo_order;
    u64 userdata;
    const EventType* type;

    // Sort by time, unless the times are the same, in which case sort by
    // the order added to the queue
    friend bool operator>(const Event& left, const Event& right) {
        return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
    }

    friend bool operator<(const Event& left, const Event& right) {
        return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
    }
};

CoreTiming::CoreTiming() = default;
CoreTiming::~CoreTiming() = default;

void CoreTiming::Initialize() {
    for (std::size_t core = 0; core < num_cpu_cores; core++) {
        downcounts[core] = MAX_SLICE_LENGTH;
        time_slice[core] = MAX_SLICE_LENGTH;
    }
    slice_length = MAX_SLICE_LENGTH;
    global_timer = 0;
    idled_cycles = 0;
    current_context = 0;

    // The time between CoreTiming being initialized and the first call to Advance() is considered
    // the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
    // executing the first cycle of each slice to prepare the slice length and downcount for
    // that slice.
    is_global_timer_sane = true;

    event_fifo_id = 0;

    const auto empty_timed_callback = [](u64, s64) {};
    ev_lost = RegisterEvent("_lost_event", empty_timed_callback);
}

void CoreTiming::Shutdown() {
    ClearPendingEvents();
    UnregisterAllEvents();
}

EventType* CoreTiming::RegisterEvent(const std::string& name, TimedCallback callback) {
    std::lock_guard guard{inner_mutex};
    // check for existing type with same name.
    // we want event type names to remain unique so that we can use them for serialization.
    ASSERT_MSG(event_types.find(name) == event_types.end(),
               "CoreTiming Event \"{}\" is already registered. Events should only be registered "
               "during Init to avoid breaking save states.",
               name.c_str());

    auto info = event_types.emplace(name, EventType{callback, nullptr});
    EventType* event_type = &info.first->second;
    event_type->name = &info.first->first;
    return event_type;
}

void CoreTiming::UnregisterAllEvents() {
    ASSERT_MSG(event_queue.empty(), "Cannot unregister events with events pending");
    event_types.clear();
}

void CoreTiming::ScheduleEvent(s64 cycles_into_future, const EventType* event_type, u64 userdata) {
    ASSERT(event_type != nullptr);
    std::lock_guard guard{inner_mutex};
    const s64 timeout = GetTicks() + cycles_into_future;

    // If this event needs to be scheduled before the next advance(), force one early
    if (!is_global_timer_sane) {
        ForceExceptionCheck(cycles_into_future);
    }

    event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type});
    std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}

void CoreTiming::UnscheduleEvent(const EventType* event_type, u64 userdata) {
    std::lock_guard guard{inner_mutex};
    const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
        return e.type == event_type && e.userdata == userdata;
    });

    // Removing random items breaks the invariant so we have to re-establish it.
    if (itr != event_queue.end()) {
        event_queue.erase(itr, event_queue.end());
        std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
    }
}

u64 CoreTiming::GetTicks() const {
    u64 ticks = static_cast<u64>(global_timer);
    if (!is_global_timer_sane) {
        ticks += accumulated_ticks;
    }
    return ticks;
}

u64 CoreTiming::GetIdleTicks() const {
    return static_cast<u64>(idled_cycles);
}

void CoreTiming::AddTicks(u64 ticks) {
    accumulated_ticks += ticks;
    downcounts[current_context] -= static_cast<s64>(ticks);
}

void CoreTiming::ClearPendingEvents() {
    event_queue.clear();
}

void CoreTiming::RemoveEvent(const EventType* event_type) {
    std::lock_guard guard{inner_mutex};
    const auto itr = std::remove_if(event_queue.begin(), event_queue.end(),
                                    [&](const Event& e) { return e.type == event_type; });

    // Removing random items breaks the invariant so we have to re-establish it.
    if (itr != event_queue.end()) {
        event_queue.erase(itr, event_queue.end());
        std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
    }
}

void CoreTiming::ForceExceptionCheck(s64 cycles) {
    cycles = std::max<s64>(0, cycles);
    if (downcounts[current_context] <= cycles) {
        return;
    }

    // downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int
    // here. Account for cycles already executed by adjusting the g.slice_length
    downcounts[current_context] = static_cast<int>(cycles);
}

std::optional<u64> CoreTiming::NextAvailableCore(const s64 needed_ticks) const {
    const u64 original_context = current_context;
    u64 next_context = (original_context + 1) % num_cpu_cores;
    while (next_context != original_context) {
        if (time_slice[next_context] >= needed_ticks) {
            return {next_context};
        } else if (time_slice[next_context] >= 0) {
            return {};
        }
        next_context = (next_context + 1) % num_cpu_cores;
    }
    return {};
}

void CoreTiming::Advance() {
    std::unique_lock<std::mutex> guard(inner_mutex);

    const int cycles_executed = accumulated_ticks;
    time_slice[current_context] = std::max<s64>(0, time_slice[current_context] - accumulated_ticks);
    global_timer += cycles_executed;

    is_global_timer_sane = true;

    while (!event_queue.empty() && event_queue.front().time <= global_timer) {
        Event evt = std::move(event_queue.front());
        std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
        event_queue.pop_back();
        inner_mutex.unlock();
        evt.type->callback(evt.userdata, global_timer - evt.time);
        inner_mutex.lock();
    }

    is_global_timer_sane = false;

    // Still events left (scheduled in the future)
    if (!event_queue.empty()) {
        s64 needed_ticks = std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH);
        const auto next_core = NextAvailableCore(needed_ticks);
        if (next_core) {
            downcounts[*next_core] = needed_ticks;
        }
    }

    accumulated_ticks = 0;

    downcounts[current_context] = time_slice[current_context];
}

void CoreTiming::ResetRun() {
    for (std::size_t core = 0; core < num_cpu_cores; core++) {
        downcounts[core] = MAX_SLICE_LENGTH;
        time_slice[core] = MAX_SLICE_LENGTH;
    }
    current_context = 0;
    // Still events left (scheduled in the future)
    if (!event_queue.empty()) {
        s64 needed_ticks = std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH);
        downcounts[current_context] = needed_ticks;
    }

    is_global_timer_sane = false;
    accumulated_ticks = 0;
}

void CoreTiming::Idle() {
    accumulated_ticks += downcounts[current_context];
    idled_cycles += downcounts[current_context];
    downcounts[current_context] = 0;
}

std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
    return std::chrono::microseconds{GetTicks() * 1000000 / BASE_CLOCK_RATE};
}

s64 CoreTiming::GetDowncount() const {
    return downcounts[current_context];
}

} // namespace Core::Timing