1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <atomic>
#include <memory>
#include <mutex>
#include <vector>
#include "common/common_types.h"
#include "common/multi_level_queue.h"
#include "common/spin_lock.h"
#include "core/hardware_properties.h"
#include "core/hle/kernel/thread.h"
namespace Common {
class Fiber;
}
namespace Core {
class ARM_Interface;
class System;
} // namespace Core
namespace Kernel {
class KernelCore;
class Process;
class SchedulerLock;
class GlobalScheduler final {
public:
explicit GlobalScheduler(KernelCore& kernel);
~GlobalScheduler();
/// Adds a new thread to the scheduler
void AddThread(std::shared_ptr<Thread> thread);
/// Removes a thread from the scheduler
void RemoveThread(std::shared_ptr<Thread> thread);
/// Returns a list of all threads managed by the scheduler
const std::vector<std::shared_ptr<Thread>>& GetThreadList() const {
return thread_list;
}
/// Notify the scheduler a thread's status has changed.
void AdjustSchedulingOnStatus(Thread* thread, u32 old_flags);
/// Notify the scheduler a thread's priority has changed.
void AdjustSchedulingOnPriority(Thread* thread, u32 old_priority);
/// Notify the scheduler a thread's core and/or affinity mask has changed.
void AdjustSchedulingOnAffinity(Thread* thread, u64 old_affinity_mask, s32 old_core);
/**
* Takes care of selecting the new scheduled threads in three steps:
*
* 1. First a thread is selected from the top of the priority queue. If no thread
* is obtained then we move to step two, else we are done.
*
* 2. Second we try to get a suggested thread that's not assigned to any core or
* that is not the top thread in that core.
*
* 3. Third is no suggested thread is found, we do a second pass and pick a running
* thread in another core and swap it with its current thread.
*
* returns the cores needing scheduling.
*/
u32 SelectThreads();
bool HaveReadyThreads(std::size_t core_id) const {
return !scheduled_queue[core_id].empty();
}
/**
* Takes a thread and moves it to the back of the it's priority list.
*
* @note This operation can be redundant and no scheduling is changed if marked as so.
*/
bool YieldThread(Thread* thread);
/**
* Takes a thread and moves it to the back of the it's priority list.
* Afterwards, tries to pick a suggested thread from the suggested queue that has worse time or
* a better priority than the next thread in the core.
*
* @note This operation can be redundant and no scheduling is changed if marked as so.
*/
bool YieldThreadAndBalanceLoad(Thread* thread);
/**
* Takes a thread and moves it out of the scheduling queue.
* and into the suggested queue. If no thread can be scheduled afterwards in that core,
* a suggested thread is obtained instead.
*
* @note This operation can be redundant and no scheduling is changed if marked as so.
*/
bool YieldThreadAndWaitForLoadBalancing(Thread* thread);
/**
* Rotates the scheduling queues of threads at a preemption priority and then does
* some core rebalancing. Preemption priorities can be found in the array
* 'preemption_priorities'.
*
* @note This operation happens every 10ms.
*/
void PreemptThreads();
u32 CpuCoresCount() const {
return Core::Hardware::NUM_CPU_CORES;
}
void SetReselectionPending() {
is_reselection_pending.store(true, std::memory_order_release);
}
bool IsReselectionPending() const {
return is_reselection_pending.load(std::memory_order_acquire);
}
void Shutdown();
private:
friend class SchedulerLock;
/// Lock the scheduler to the current thread.
void Lock();
/// Unlocks the scheduler, reselects threads, interrupts cores for rescheduling
/// and reschedules current core if needed.
void Unlock();
void EnableInterruptAndSchedule(u32 cores_pending_reschedule,
Core::EmuThreadHandle global_thread);
/**
* Add a thread to the suggested queue of a cpu core. Suggested threads may be
* picked if no thread is scheduled to run on the core.
*/
void Suggest(u32 priority, std::size_t core, Thread* thread);
/**
* Remove a thread to the suggested queue of a cpu core. Suggested threads may be
* picked if no thread is scheduled to run on the core.
*/
void Unsuggest(u32 priority, std::size_t core, Thread* thread);
/**
* Add a thread to the scheduling queue of a cpu core. The thread is added at the
* back the queue in its priority level.
*/
void Schedule(u32 priority, std::size_t core, Thread* thread);
/**
* Add a thread to the scheduling queue of a cpu core. The thread is added at the
* front the queue in its priority level.
*/
void SchedulePrepend(u32 priority, std::size_t core, Thread* thread);
/// Reschedule an already scheduled thread based on a new priority
void Reschedule(u32 priority, std::size_t core, Thread* thread);
/// Unschedules a thread.
void Unschedule(u32 priority, std::size_t core, Thread* thread);
/**
* Transfers a thread into an specific core. If the destination_core is -1
* it will be unscheduled from its source code and added into its suggested
* queue.
*/
void TransferToCore(u32 priority, s32 destination_core, Thread* thread);
bool AskForReselectionOrMarkRedundant(Thread* current_thread, const Thread* winner);
static constexpr u32 min_regular_priority = 2;
std::array<Common::MultiLevelQueue<Thread*, THREADPRIO_COUNT>, Core::Hardware::NUM_CPU_CORES>
scheduled_queue;
std::array<Common::MultiLevelQueue<Thread*, THREADPRIO_COUNT>, Core::Hardware::NUM_CPU_CORES>
suggested_queue;
std::atomic<bool> is_reselection_pending{false};
// The priority levels at which the global scheduler preempts threads every 10 ms. They are
// ordered from Core 0 to Core 3.
std::array<u32, Core::Hardware::NUM_CPU_CORES> preemption_priorities = {59, 59, 59, 62};
/// Scheduler lock mechanisms.
bool is_locked{};
std::mutex inner_lock;
std::atomic<s64> scope_lock{};
Core::EmuThreadHandle current_owner{Core::EmuThreadHandle::InvalidHandle()};
Common::SpinLock global_list_guard{};
/// Lists all thread ids that aren't deleted/etc.
std::vector<std::shared_ptr<Thread>> thread_list;
KernelCore& kernel;
};
class Scheduler final {
public:
explicit Scheduler(Core::System& system, std::size_t core_id);
~Scheduler();
/// Returns whether there are any threads that are ready to run.
bool HaveReadyThreads() const;
/// Reschedules to the next available thread (call after current thread is suspended)
void TryDoContextSwitch();
/// The next two are for SingleCore Only.
/// Unload current thread before preempting core.
void Unload(Thread* thread);
void Unload();
/// Reload current thread after core preemption.
void Reload(Thread* thread);
void Reload();
/// Gets the current running thread
Thread* GetCurrentThread() const;
/// Gets the currently selected thread from the top of the multilevel queue
Thread* GetSelectedThread() const;
/// Gets the timestamp for the last context switch in ticks.
u64 GetLastContextSwitchTicks() const;
bool ContextSwitchPending() const {
return is_context_switch_pending;
}
void Initialize();
/// Shutdowns the scheduler.
void Shutdown();
void OnThreadStart();
std::shared_ptr<Common::Fiber>& ControlContext() {
return switch_fiber;
}
const std::shared_ptr<Common::Fiber>& ControlContext() const {
return switch_fiber;
}
private:
friend class GlobalScheduler;
/// Switches the CPU's active thread context to that of the specified thread
void SwitchContext();
/// When a thread wakes up, it must run this through it's new scheduler
void SwitchContextStep2();
/**
* Called on every context switch to update the internal timestamp
* This also updates the running time ticks for the given thread and
* process using the following difference:
*
* ticks += most_recent_ticks - last_context_switch_ticks
*
* The internal tick timestamp for the scheduler is simply the
* most recent tick count retrieved. No special arithmetic is
* applied to it.
*/
void UpdateLastContextSwitchTime(Thread* thread, Process* process);
static void OnSwitch(void* this_scheduler);
void SwitchToCurrent();
std::shared_ptr<Thread> current_thread = nullptr;
std::shared_ptr<Thread> selected_thread = nullptr;
std::shared_ptr<Thread> current_thread_prev = nullptr;
std::shared_ptr<Thread> selected_thread_set = nullptr;
std::shared_ptr<Thread> idle_thread = nullptr;
std::shared_ptr<Common::Fiber> switch_fiber = nullptr;
Core::System& system;
u64 last_context_switch_time = 0;
u64 idle_selection_count = 0;
const std::size_t core_id;
Common::SpinLock guard{};
bool is_context_switch_pending = false;
};
class SchedulerLock {
public:
[[nodiscard]] explicit SchedulerLock(KernelCore& kernel);
~SchedulerLock();
protected:
KernelCore& kernel;
};
class SchedulerLockAndSleep : public SchedulerLock {
public:
explicit SchedulerLockAndSleep(KernelCore& kernel, Handle& event_handle, Thread* time_task,
s64 nanoseconds);
~SchedulerLockAndSleep();
void CancelSleep() {
sleep_cancelled = true;
}
void Release();
private:
Handle& event_handle;
Thread* time_task;
s64 nanoseconds;
bool sleep_cancelled{};
};
} // namespace Kernel
|