summaryrefslogtreecommitdiffstats
path: root/src/core/hle/service/jit/jit_context.cpp
blob: 0090e8568da37abd87a1731445347c4c4c1fc7bc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include <array>
#include <map>
#include <span>
#include <boost/icl/interval_set.hpp>
#include <dynarmic/interface/A64/a64.h>
#include <dynarmic/interface/A64/config.h>

#include "common/alignment.h"
#include "common/common_funcs.h"
#include "common/div_ceil.h"
#include "common/elf.h"
#include "common/logging/log.h"
#include "core/hle/service/jit/jit_context.h"
#include "core/memory.h"

using namespace Common::ELF;

namespace Service::JIT {

constexpr std::array<u8, 8> SVC0_ARM64 = {
    0x01, 0x00, 0x00, 0xd4, // svc  #0
    0xc0, 0x03, 0x5f, 0xd6, // ret
};

constexpr std::array HELPER_FUNCTIONS{
    "_stop", "_resolve", "_panic", "memcpy", "memmove", "memset",
};

constexpr size_t STACK_ALIGN = 16;

class JITContextImpl;

using IntervalSet = boost::icl::interval_set<VAddr>::type;
using IntervalType = boost::icl::interval_set<VAddr>::interval_type;

class DynarmicCallbacks64 : public Dynarmic::A64::UserCallbacks {
public:
    explicit DynarmicCallbacks64(Core::Memory::Memory& memory_, std::vector<u8>& local_memory_,
                                 IntervalSet& mapped_ranges_, JITContextImpl& parent_)
        : memory{memory_}, local_memory{local_memory_},
          mapped_ranges{mapped_ranges_}, parent{parent_} {}

    u8 MemoryRead8(u64 vaddr) override {
        return ReadMemory<u8>(vaddr);
    }
    u16 MemoryRead16(u64 vaddr) override {
        return ReadMemory<u16>(vaddr);
    }
    u32 MemoryRead32(u64 vaddr) override {
        return ReadMemory<u32>(vaddr);
    }
    u64 MemoryRead64(u64 vaddr) override {
        return ReadMemory<u64>(vaddr);
    }
    u128 MemoryRead128(u64 vaddr) override {
        return ReadMemory<u128>(vaddr);
    }
    std::string MemoryReadCString(u64 vaddr) {
        std::string result;
        u8 next;

        while ((next = MemoryRead8(vaddr++)) != 0) {
            result += next;
        }

        return result;
    }

    void MemoryWrite8(u64 vaddr, u8 value) override {
        WriteMemory<u8>(vaddr, value);
    }
    void MemoryWrite16(u64 vaddr, u16 value) override {
        WriteMemory<u16>(vaddr, value);
    }
    void MemoryWrite32(u64 vaddr, u32 value) override {
        WriteMemory<u32>(vaddr, value);
    }
    void MemoryWrite64(u64 vaddr, u64 value) override {
        WriteMemory<u64>(vaddr, value);
    }
    void MemoryWrite128(u64 vaddr, u128 value) override {
        WriteMemory<u128>(vaddr, value);
    }

    bool MemoryWriteExclusive8(u64 vaddr, u8 value, u8) override {
        return WriteMemory<u8>(vaddr, value);
    }
    bool MemoryWriteExclusive16(u64 vaddr, u16 value, u16) override {
        return WriteMemory<u16>(vaddr, value);
    }
    bool MemoryWriteExclusive32(u64 vaddr, u32 value, u32) override {
        return WriteMemory<u32>(vaddr, value);
    }
    bool MemoryWriteExclusive64(u64 vaddr, u64 value, u64) override {
        return WriteMemory<u64>(vaddr, value);
    }
    bool MemoryWriteExclusive128(u64 vaddr, u128 value, u128) override {
        return WriteMemory<u128>(vaddr, value);
    }

    void CallSVC(u32 swi) override;
    void ExceptionRaised(u64 pc, Dynarmic::A64::Exception exception) override;
    void InterpreterFallback(u64 pc, size_t num_instructions) override;

    void AddTicks(u64 ticks) override {}
    u64 GetTicksRemaining() override {
        return std::numeric_limits<u32>::max();
    }
    u64 GetCNTPCT() override {
        return 0;
    }

    template <class T>
    T ReadMemory(u64 vaddr) {
        T ret{};
        if (boost::icl::contains(mapped_ranges, vaddr)) {
            memory.ReadBlock(vaddr, &ret, sizeof(T));
        } else if (vaddr + sizeof(T) > local_memory.size()) {
            LOG_CRITICAL(Service_JIT, "plugin: unmapped read @ 0x{:016x}", vaddr);
        } else {
            std::memcpy(&ret, local_memory.data() + vaddr, sizeof(T));
        }
        return ret;
    }

    template <class T>
    bool WriteMemory(u64 vaddr, const T value) {
        if (boost::icl::contains(mapped_ranges, vaddr)) {
            memory.WriteBlock(vaddr, &value, sizeof(T));
        } else if (vaddr + sizeof(T) > local_memory.size()) {
            LOG_CRITICAL(Service_JIT, "plugin: unmapped write @ 0x{:016x}", vaddr);
        } else {
            std::memcpy(local_memory.data() + vaddr, &value, sizeof(T));
        }
        return true;
    }

private:
    Core::Memory::Memory& memory;
    std::vector<u8>& local_memory;
    IntervalSet& mapped_ranges;
    JITContextImpl& parent;
};

class JITContextImpl {
public:
    explicit JITContextImpl(Core::Memory::Memory& memory_) : memory{memory_} {
        callbacks =
            std::make_unique<DynarmicCallbacks64>(memory, local_memory, mapped_ranges, *this);
        user_config.callbacks = callbacks.get();
        jit = std::make_unique<Dynarmic::A64::Jit>(user_config);
    }

    bool LoadNRO(std::span<const u8> data) {
        local_memory.clear();

        relocbase = local_memory.size();
        local_memory.insert(local_memory.end(), data.begin(), data.end());

        if (FixupRelocations()) {
            InsertHelperFunctions();
            InsertStack();
            return true;
        }

        return false;
    }

    bool FixupRelocations() {
        // The loaded NRO file has ELF relocations that must be processed before it can run.
        // Normally this would be processed by RTLD, but in HLE context, we don't have
        // the linker available, so we have to do it ourselves.

        const VAddr mod_offset{callbacks->MemoryRead32(4)};
        if (callbacks->MemoryRead32(mod_offset) != Common::MakeMagic('M', 'O', 'D', '0')) {
            return false;
        }

        // For more info about dynamic entries, see the ELF ABI specification:
        // https://refspecs.linuxbase.org/elf/gabi4+/ch5.dynamic.html
        // https://refspecs.linuxbase.org/elf/gabi4+/ch4.reloc.html
        VAddr dynamic_offset{mod_offset + callbacks->MemoryRead32(mod_offset + 4)};
        VAddr rela_dyn = 0, relr_dyn = 0;
        size_t num_rela = 0, num_relr = 0;
        while (true) {
            const auto dyn{callbacks->ReadMemory<Elf64_Dyn>(dynamic_offset)};
            dynamic_offset += sizeof(Elf64_Dyn);

            if (!dyn.d_tag) {
                break;
            }
            if (dyn.d_tag == ElfDtRela) {
                rela_dyn = dyn.d_un.d_ptr;
            }
            if (dyn.d_tag == ElfDtRelasz) {
                num_rela = dyn.d_un.d_val / sizeof(Elf64_Rela);
            }
            if (dyn.d_tag == ElfDtRelr) {
                relr_dyn = dyn.d_un.d_ptr;
            }
            if (dyn.d_tag == ElfDtRelrsz) {
                num_relr = dyn.d_un.d_val / sizeof(Elf64_Relr);
            }
        }

        for (size_t i = 0; i < num_rela; i++) {
            const auto rela{callbacks->ReadMemory<Elf64_Rela>(rela_dyn + i * sizeof(Elf64_Rela))};
            if (Elf64RelType(rela.r_info) != ElfAArch64Relative) {
                continue;
            }
            const VAddr contents{callbacks->MemoryRead64(rela.r_offset)};
            callbacks->MemoryWrite64(rela.r_offset, contents + rela.r_addend);
        }

        VAddr relr_where = 0;
        for (size_t i = 0; i < num_relr; i++) {
            const auto relr{callbacks->ReadMemory<Elf64_Relr>(relr_dyn + i * sizeof(Elf64_Relr))};
            const auto incr{[&](VAddr where) {
                callbacks->MemoryWrite64(where, callbacks->MemoryRead64(where) + relocbase);
            }};

            if ((relr & 1) == 0) {
                // where pointer
                relr_where = relocbase + relr;
                incr(relr_where);
                relr_where += sizeof(Elf64_Addr);
            } else {
                // bitmap
                for (int bit = 1; bit < 64; bit++) {
                    if ((relr & (1ULL << bit)) != 0) {
                        incr(relr_where + i * sizeof(Elf64_Addr));
                    }
                }
                relr_where += 63 * sizeof(Elf64_Addr);
            }
        }

        return true;
    }

    void InsertHelperFunctions() {
        for (const auto& name : HELPER_FUNCTIONS) {
            helpers[name] = local_memory.size();
            local_memory.insert(local_memory.end(), SVC0_ARM64.begin(), SVC0_ARM64.end());
        }
    }

    void InsertStack() {
        // Allocate enough space to avoid any reasonable risk of
        // overflowing the stack during plugin execution
        const u64 pad_amount{Common::AlignUp(local_memory.size(), STACK_ALIGN) -
                             local_memory.size()};
        local_memory.insert(local_memory.end(), 0x10000 + pad_amount, 0);
        top_of_stack = local_memory.size();
        heap_pointer = top_of_stack;
    }

    void MapProcessMemory(VAddr dest_address, std::size_t size) {
        mapped_ranges.add(IntervalType{dest_address, dest_address + size});
    }

    void PushArgument(const void* data, size_t size) {
        const size_t num_words = Common::DivCeil(size, sizeof(u64));
        const size_t current_pos = argument_stack.size();
        argument_stack.insert(argument_stack.end(), num_words, 0);
        std::memcpy(argument_stack.data() + current_pos, data, size);
    }

    void SetupArguments() {
        // The first 8 integer registers are used for the first 8 integer
        // arguments. Floating-point arguments are not handled at this time.
        //
        // If a function takes more than 8 arguments, then stack space is reserved
        // for the remaining arguments, and the remaining arguments are inserted in
        // ascending memory order, each argument aligned to an 8-byte boundary. The
        // stack pointer must remain aligned to 16 bytes.
        //
        // For more info, see the AArch64 ABI PCS:
        // https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst

        for (size_t i = 0; i < 8 && i < argument_stack.size(); i++) {
            jit->SetRegister(i, argument_stack[i]);
        }

        if (argument_stack.size() > 8) {
            const VAddr new_sp = Common::AlignDown(
                top_of_stack - (argument_stack.size() - 8) * sizeof(u64), STACK_ALIGN);
            for (size_t i = 8; i < argument_stack.size(); i++) {
                callbacks->MemoryWrite64(new_sp + (i - 8) * sizeof(u64), argument_stack[i]);
            }
            jit->SetSP(new_sp);
        }

        // Reset the call state for the next invocation
        argument_stack.clear();
        heap_pointer = top_of_stack;
    }

    u64 CallFunction(VAddr func) {
        jit->SetRegister(30, helpers["_stop"]);
        jit->SetSP(top_of_stack);
        SetupArguments();

        jit->SetPC(func);
        jit->Run();
        return jit->GetRegister(0);
    }

    VAddr GetHelper(const std::string& name) {
        return helpers[name];
    }

    VAddr AddHeap(const void* data, size_t size) {
        // Require all heap data types to have the same alignment as the
        // stack pointer, for compatibility
        const size_t num_bytes{Common::AlignUp(size, STACK_ALIGN)};

        // Make additional memory space if required
        if (heap_pointer + num_bytes > local_memory.size()) {
            local_memory.insert(local_memory.end(),
                                (heap_pointer + num_bytes) - local_memory.size(), 0);
        }

        const VAddr location{heap_pointer};
        std::memcpy(local_memory.data() + location, data, size);
        heap_pointer += num_bytes;
        return location;
    }

    void GetHeap(VAddr location, void* data, size_t size) {
        std::memcpy(data, local_memory.data() + location, size);
    }

    std::unique_ptr<DynarmicCallbacks64> callbacks;
    std::vector<u8> local_memory;
    std::vector<u64> argument_stack;
    IntervalSet mapped_ranges;
    Dynarmic::A64::UserConfig user_config;
    std::unique_ptr<Dynarmic::A64::Jit> jit;
    std::map<std::string, VAddr, std::less<>> helpers;
    Core::Memory::Memory& memory;
    VAddr top_of_stack;
    VAddr heap_pointer;
    VAddr relocbase;
};

void DynarmicCallbacks64::CallSVC(u32 swi) {
    // Service calls are used to implement helper functionality.
    //
    // The most important of these is the _stop helper, which transfers control
    // from the plugin back to HLE context to return a value. However, a few more
    // are also implemented to reduce the need for direct ARM implementations of
    // basic functionality, like memory operations.
    //
    // When we receive a helper request, the swi number will be zero, and the call
    // will have originated from an address we know is a helper function. Otherwise,
    // the plugin may be trying to issue a service call, which we shouldn't handle.

    if (swi != 0) {
        LOG_CRITICAL(Service_JIT, "plugin issued unknown service call {}", swi);
        parent.jit->HaltExecution();
        return;
    }

    u64 pc{parent.jit->GetPC() - 4};
    auto& helpers{parent.helpers};

    if (pc == helpers["memcpy"] || pc == helpers["memmove"]) {
        const VAddr dest{parent.jit->GetRegister(0)};
        const VAddr src{parent.jit->GetRegister(1)};
        const size_t n{parent.jit->GetRegister(2)};

        if (dest < src) {
            for (size_t i = 0; i < n; i++) {
                MemoryWrite8(dest + i, MemoryRead8(src + i));
            }
        } else {
            for (size_t i = n; i > 0; i--) {
                MemoryWrite8(dest + i - 1, MemoryRead8(src + i - 1));
            }
        }
    } else if (pc == helpers["memset"]) {
        const VAddr dest{parent.jit->GetRegister(0)};
        const u64 c{parent.jit->GetRegister(1)};
        const size_t n{parent.jit->GetRegister(2)};

        for (size_t i = 0; i < n; i++) {
            MemoryWrite8(dest + i, static_cast<u8>(c));
        }
    } else if (pc == helpers["_resolve"]) {
        // X0 contains a char* for a symbol to resolve
        const auto name{MemoryReadCString(parent.jit->GetRegister(0))};
        const auto helper{helpers[name]};

        if (helper != 0) {
            parent.jit->SetRegister(0, helper);
        } else {
            LOG_WARNING(Service_JIT, "plugin requested unknown function {}", name);
            parent.jit->SetRegister(0, helpers["_panic"]);
        }
    } else if (pc == helpers["_stop"]) {
        parent.jit->HaltExecution();
    } else if (pc == helpers["_panic"]) {
        LOG_CRITICAL(Service_JIT, "plugin panicked!");
        parent.jit->HaltExecution();
    } else {
        LOG_CRITICAL(Service_JIT, "plugin issued syscall at unknown address 0x{:x}", pc);
        parent.jit->HaltExecution();
    }
}

void DynarmicCallbacks64::ExceptionRaised(u64 pc, Dynarmic::A64::Exception exception) {
    LOG_CRITICAL(Service_JIT, "Illegal operation PC @ {:08x}", pc);
    parent.jit->HaltExecution();
}

void DynarmicCallbacks64::InterpreterFallback(u64 pc, size_t num_instructions) {
    LOG_CRITICAL(Service_JIT, "Unimplemented instruction PC @ {:08x}", pc);
    parent.jit->HaltExecution();
}

JITContext::JITContext(Core::Memory::Memory& memory)
    : impl{std::make_unique<JITContextImpl>(memory)} {}

JITContext::~JITContext() {}

bool JITContext::LoadNRO(std::span<const u8> data) {
    return impl->LoadNRO(data);
}

void JITContext::MapProcessMemory(VAddr dest_address, std::size_t size) {
    impl->MapProcessMemory(dest_address, size);
}

u64 JITContext::CallFunction(VAddr func) {
    return impl->CallFunction(func);
}

void JITContext::PushArgument(const void* data, size_t size) {
    impl->PushArgument(data, size);
}

VAddr JITContext::GetHelper(const std::string& name) {
    return impl->GetHelper(name);
}

VAddr JITContext::AddHeap(const void* data, size_t size) {
    return impl->AddHeap(data, size);
}

void JITContext::GetHeap(VAddr location, void* data, size_t size) {
    impl->GetHeap(location, data, size);
}

} // namespace Service::JIT