1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
|
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/algorithm.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/polyfill_ranges.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/memory.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/maxwell_dma.h"
#include "video_core/guest_memory.h"
#include "video_core/memory_manager.h"
#include "video_core/renderer_base.h"
#include "video_core/textures/decoders.h"
MICROPROFILE_DECLARE(GPU_DMAEngine);
MICROPROFILE_DECLARE(GPU_DMAEngineBL);
MICROPROFILE_DECLARE(GPU_DMAEngineLB);
MICROPROFILE_DECLARE(GPU_DMAEngineBB);
MICROPROFILE_DEFINE(GPU_DMAEngine, "GPU", "DMA Engine", MP_RGB(224, 224, 128));
MICROPROFILE_DEFINE(GPU_DMAEngineBL, "GPU", "DMA Engine Block - Linear", MP_RGB(224, 224, 128));
MICROPROFILE_DEFINE(GPU_DMAEngineLB, "GPU", "DMA Engine Linear - Block", MP_RGB(224, 224, 128));
MICROPROFILE_DEFINE(GPU_DMAEngineBB, "GPU", "DMA Engine Block - Block", MP_RGB(224, 224, 128));
namespace Tegra::Engines {
using namespace Texture;
MaxwellDMA::MaxwellDMA(Core::System& system_, MemoryManager& memory_manager_)
: system{system_}, memory_manager{memory_manager_} {
execution_mask.reset();
execution_mask[offsetof(Regs, launch_dma) / sizeof(u32)] = true;
}
MaxwellDMA::~MaxwellDMA() = default;
void MaxwellDMA::BindRasterizer(VideoCore::RasterizerInterface* rasterizer_) {
rasterizer = rasterizer_;
}
void MaxwellDMA::ConsumeSinkImpl() {
for (auto [method, value] : method_sink) {
regs.reg_array[method] = value;
}
method_sink.clear();
}
void MaxwellDMA::CallMethod(u32 method, u32 method_argument, bool is_last_call) {
ASSERT_MSG(method < NUM_REGS, "Invalid MaxwellDMA register");
regs.reg_array[method] = method_argument;
if (method == offsetof(Regs, launch_dma) / sizeof(u32)) {
Launch();
}
}
void MaxwellDMA::CallMultiMethod(u32 method, const u32* base_start, u32 amount,
u32 methods_pending) {
for (u32 i = 0; i < amount; ++i) {
CallMethod(method, base_start[i], methods_pending - i <= 1);
}
}
void MaxwellDMA::Launch() {
MICROPROFILE_SCOPE(GPU_DMAEngine);
LOG_TRACE(Render_OpenGL, "DMA copy 0x{:x} -> 0x{:x}", static_cast<GPUVAddr>(regs.offset_in),
static_cast<GPUVAddr>(regs.offset_out));
// TODO(Subv): Perform more research and implement all features of this engine.
const LaunchDMA& launch = regs.launch_dma;
ASSERT(launch.interrupt_type == LaunchDMA::InterruptType::NONE);
ASSERT(launch.data_transfer_type == LaunchDMA::DataTransferType::NON_PIPELINED);
if (launch.multi_line_enable) {
const bool is_src_pitch = launch.src_memory_layout == LaunchDMA::MemoryLayout::PITCH;
const bool is_dst_pitch = launch.dst_memory_layout == LaunchDMA::MemoryLayout::PITCH;
memory_manager.FlushCaching();
if (!is_src_pitch && !is_dst_pitch) {
// If both the source and the destination are in block layout, assert.
MICROPROFILE_SCOPE(GPU_DMAEngineBB);
CopyBlockLinearToBlockLinear();
ReleaseSemaphore();
return;
}
if (is_src_pitch && is_dst_pitch) {
for (u32 line = 0; line < regs.line_count; ++line) {
const GPUVAddr source_line =
regs.offset_in + static_cast<size_t>(line) * regs.pitch_in;
const GPUVAddr dest_line =
regs.offset_out + static_cast<size_t>(line) * regs.pitch_out;
memory_manager.CopyBlock(dest_line, source_line, regs.line_length_in);
}
} else {
if (!is_src_pitch && is_dst_pitch) {
MICROPROFILE_SCOPE(GPU_DMAEngineBL);
CopyBlockLinearToPitch();
} else {
MICROPROFILE_SCOPE(GPU_DMAEngineLB);
CopyPitchToBlockLinear();
}
}
} else {
// TODO: allow multisized components.
auto& accelerate = rasterizer->AccessAccelerateDMA();
const bool is_const_a_dst = regs.remap_const.dst_x == RemapConst::Swizzle::CONST_A;
if (regs.launch_dma.remap_enable != 0 && is_const_a_dst) {
ASSERT(regs.remap_const.component_size_minus_one == 3);
accelerate.BufferClear(regs.offset_out, regs.line_length_in,
regs.remap_const.remap_consta_value);
read_buffer.resize_destructive(regs.line_length_in * sizeof(u32));
std::span<u32> span(reinterpret_cast<u32*>(read_buffer.data()), regs.line_length_in);
std::ranges::fill(span, regs.remap_const.remap_consta_value);
memory_manager.WriteBlockUnsafe(regs.offset_out,
reinterpret_cast<u8*>(read_buffer.data()),
regs.line_length_in * sizeof(u32));
} else {
memory_manager.FlushCaching();
const auto convert_linear_2_blocklinear_addr = [](u64 address) {
return (address & ~0x1f0ULL) | ((address & 0x40) >> 2) | ((address & 0x10) << 1) |
((address & 0x180) >> 1) | ((address & 0x20) << 3);
};
const auto src_kind = memory_manager.GetPageKind(regs.offset_in);
const auto dst_kind = memory_manager.GetPageKind(regs.offset_out);
const bool is_src_pitch = IsPitchKind(src_kind);
const bool is_dst_pitch = IsPitchKind(dst_kind);
if (!is_src_pitch && is_dst_pitch) {
UNIMPLEMENTED_IF(regs.line_length_in % 16 != 0);
UNIMPLEMENTED_IF(regs.offset_in % 16 != 0);
UNIMPLEMENTED_IF(regs.offset_out % 16 != 0);
read_buffer.resize_destructive(16);
for (u32 offset = 0; offset < regs.line_length_in; offset += 16) {
Tegra::Memory::GpuGuestMemoryScoped<
u8, Tegra::Memory::GuestMemoryFlags::SafeReadCachedWrite>
tmp_write_buffer(memory_manager,
convert_linear_2_blocklinear_addr(regs.offset_in + offset),
16, &read_buffer);
tmp_write_buffer.SetAddressAndSize(regs.offset_out + offset, 16);
}
} else if (is_src_pitch && !is_dst_pitch) {
UNIMPLEMENTED_IF(regs.line_length_in % 16 != 0);
UNIMPLEMENTED_IF(regs.offset_in % 16 != 0);
UNIMPLEMENTED_IF(regs.offset_out % 16 != 0);
read_buffer.resize_destructive(16);
for (u32 offset = 0; offset < regs.line_length_in; offset += 16) {
Tegra::Memory::GpuGuestMemoryScoped<
u8, Tegra::Memory::GuestMemoryFlags::SafeReadCachedWrite>
tmp_write_buffer(memory_manager, regs.offset_in + offset, 16, &read_buffer);
tmp_write_buffer.SetAddressAndSize(
convert_linear_2_blocklinear_addr(regs.offset_out + offset), 16);
}
} else {
if (!accelerate.BufferCopy(regs.offset_in, regs.offset_out, regs.line_length_in)) {
Tegra::Memory::GpuGuestMemoryScoped<
u8, Tegra::Memory::GuestMemoryFlags::SafeReadCachedWrite>
tmp_write_buffer(memory_manager, regs.offset_in, regs.line_length_in,
&read_buffer);
tmp_write_buffer.SetAddressAndSize(regs.offset_out, regs.line_length_in);
}
}
}
}
ReleaseSemaphore();
}
void MaxwellDMA::CopyBlockLinearToPitch() {
UNIMPLEMENTED_IF(regs.launch_dma.remap_enable != 0);
u32 bytes_per_pixel = 1;
DMA::ImageOperand src_operand;
src_operand.bytes_per_pixel = bytes_per_pixel;
src_operand.params = regs.src_params;
src_operand.address = regs.offset_in;
DMA::BufferOperand dst_operand;
dst_operand.pitch = static_cast<u32>(std::abs(regs.pitch_out));
dst_operand.width = regs.line_length_in;
dst_operand.height = regs.line_count;
dst_operand.address = regs.offset_out;
DMA::ImageCopy copy_info{};
copy_info.length_x = regs.line_length_in;
copy_info.length_y = regs.line_count;
auto& accelerate = rasterizer->AccessAccelerateDMA();
if (accelerate.ImageToBuffer(copy_info, src_operand, dst_operand)) {
return;
}
UNIMPLEMENTED_IF(regs.src_params.block_size.width != 0);
UNIMPLEMENTED_IF(regs.src_params.block_size.depth != 0);
UNIMPLEMENTED_IF(regs.src_params.block_size.depth == 0 && regs.src_params.depth != 1);
// Deswizzle the input and copy it over.
const DMA::Parameters& src_params = regs.src_params;
const bool is_remapping = regs.launch_dma.remap_enable != 0;
const u32 num_remap_components = regs.remap_const.num_dst_components_minus_one + 1;
const u32 remap_components_size = regs.remap_const.component_size_minus_one + 1;
const u32 base_bpp = !is_remapping ? 1U : num_remap_components * remap_components_size;
u32 width = src_params.width;
u32 x_elements = regs.line_length_in;
u32 x_offset = src_params.origin.x;
u32 bpp_shift = 0U;
if (!is_remapping) {
bpp_shift = Common::FoldRight(
4U, [](u32 x, u32 y) { return std::min(x, static_cast<u32>(std::countr_zero(y))); },
width, x_elements, x_offset, static_cast<u32>(regs.offset_in));
width >>= bpp_shift;
x_elements >>= bpp_shift;
x_offset >>= bpp_shift;
}
bytes_per_pixel = base_bpp << bpp_shift;
const u32 height = src_params.height;
const u32 depth = src_params.depth;
const u32 block_height = src_params.block_size.height;
const u32 block_depth = src_params.block_size.depth;
const size_t src_size =
CalculateSize(true, bytes_per_pixel, width, height, depth, block_height, block_depth);
const size_t dst_size = dst_operand.pitch * regs.line_count;
Tegra::Memory::GpuGuestMemory<u8, Tegra::Memory::GuestMemoryFlags::SafeRead> tmp_read_buffer(
memory_manager, src_operand.address, src_size, &read_buffer);
Tegra::Memory::GpuGuestMemoryScoped<u8, Tegra::Memory::GuestMemoryFlags::UnsafeReadCachedWrite>
tmp_write_buffer(memory_manager, dst_operand.address, dst_size, &write_buffer);
UnswizzleSubrect(tmp_write_buffer, tmp_read_buffer, bytes_per_pixel, width, height, depth,
x_offset, src_params.origin.y, x_elements, regs.line_count, block_height,
block_depth, dst_operand.pitch);
}
void MaxwellDMA::CopyPitchToBlockLinear() {
UNIMPLEMENTED_IF_MSG(regs.dst_params.block_size.width != 0, "Block width is not one");
UNIMPLEMENTED_IF(regs.dst_params.layer != 0);
const bool is_remapping = regs.launch_dma.remap_enable != 0;
const u32 num_remap_components = regs.remap_const.num_dst_components_minus_one + 1;
const u32 remap_components_size = regs.remap_const.component_size_minus_one + 1;
u32 bytes_per_pixel = 1;
DMA::ImageOperand dst_operand;
dst_operand.bytes_per_pixel = bytes_per_pixel;
dst_operand.params = regs.dst_params;
dst_operand.address = regs.offset_out;
DMA::BufferOperand src_operand;
src_operand.pitch = regs.pitch_in;
src_operand.width = regs.line_length_in;
src_operand.height = regs.line_count;
src_operand.address = regs.offset_in;
DMA::ImageCopy copy_info{};
copy_info.length_x = regs.line_length_in;
copy_info.length_y = regs.line_count;
auto& accelerate = rasterizer->AccessAccelerateDMA();
if (accelerate.BufferToImage(copy_info, src_operand, dst_operand)) {
return;
}
const auto& dst_params = regs.dst_params;
const u32 base_bpp = !is_remapping ? 1U : num_remap_components * remap_components_size;
u32 width = dst_params.width;
u32 x_elements = regs.line_length_in;
u32 x_offset = dst_params.origin.x;
u32 bpp_shift = 0U;
if (!is_remapping) {
bpp_shift = Common::FoldRight(
4U, [](u32 x, u32 y) { return std::min(x, static_cast<u32>(std::countr_zero(y))); },
width, x_elements, x_offset, static_cast<u32>(regs.offset_out));
width >>= bpp_shift;
x_elements >>= bpp_shift;
x_offset >>= bpp_shift;
}
bytes_per_pixel = base_bpp << bpp_shift;
const u32 height = dst_params.height;
const u32 depth = dst_params.depth;
const u32 block_height = dst_params.block_size.height;
const u32 block_depth = dst_params.block_size.depth;
const size_t dst_size =
CalculateSize(true, bytes_per_pixel, width, height, depth, block_height, block_depth);
const size_t src_size = static_cast<size_t>(regs.pitch_in) * regs.line_count;
GPUVAddr src_addr = regs.offset_in;
GPUVAddr dst_addr = regs.offset_out;
Tegra::Memory::GpuGuestMemory<u8, Tegra::Memory::GuestMemoryFlags::SafeRead> tmp_read_buffer(
memory_manager, src_addr, src_size, &read_buffer);
Tegra::Memory::GpuGuestMemoryScoped<u8, Tegra::Memory::GuestMemoryFlags::UnsafeReadCachedWrite>
tmp_write_buffer(memory_manager, dst_addr, dst_size, &write_buffer);
// If the input is linear and the output is tiled, swizzle the input and copy it over.
SwizzleSubrect(tmp_write_buffer, tmp_read_buffer, bytes_per_pixel, width, height, depth,
x_offset, dst_params.origin.y, x_elements, regs.line_count, block_height,
block_depth, regs.pitch_in);
}
void MaxwellDMA::CopyBlockLinearToBlockLinear() {
UNIMPLEMENTED_IF(regs.src_params.block_size.width != 0);
const bool is_remapping = regs.launch_dma.remap_enable != 0;
// Deswizzle the input and copy it over.
const DMA::Parameters& src = regs.src_params;
const DMA::Parameters& dst = regs.dst_params;
const u32 num_remap_components = regs.remap_const.num_dst_components_minus_one + 1;
const u32 remap_components_size = regs.remap_const.component_size_minus_one + 1;
const u32 base_bpp = !is_remapping ? 1U : num_remap_components * remap_components_size;
u32 src_width = src.width;
u32 dst_width = dst.width;
u32 x_elements = regs.line_length_in;
u32 src_x_offset = src.origin.x;
u32 dst_x_offset = dst.origin.x;
u32 bpp_shift = 0U;
if (!is_remapping) {
bpp_shift = Common::FoldRight(
4U, [](u32 x, u32 y) { return std::min(x, static_cast<u32>(std::countr_zero(y))); },
src_width, dst_width, x_elements, src_x_offset, dst_x_offset,
static_cast<u32>(regs.offset_in), static_cast<u32>(regs.offset_out));
src_width >>= bpp_shift;
dst_width >>= bpp_shift;
x_elements >>= bpp_shift;
src_x_offset >>= bpp_shift;
dst_x_offset >>= bpp_shift;
}
const u32 bytes_per_pixel = base_bpp << bpp_shift;
const size_t src_size = CalculateSize(true, bytes_per_pixel, src_width, src.height, src.depth,
src.block_size.height, src.block_size.depth);
const size_t dst_size = CalculateSize(true, bytes_per_pixel, dst_width, dst.height, dst.depth,
dst.block_size.height, dst.block_size.depth);
const u32 pitch = x_elements * bytes_per_pixel;
const size_t mid_buffer_size = pitch * regs.line_count;
intermediate_buffer.resize_destructive(mid_buffer_size);
Tegra::Memory::GpuGuestMemory<u8, Tegra::Memory::GuestMemoryFlags::SafeRead> tmp_read_buffer(
memory_manager, regs.offset_in, src_size, &read_buffer);
Tegra::Memory::GpuGuestMemoryScoped<u8, Tegra::Memory::GuestMemoryFlags::SafeReadCachedWrite>
tmp_write_buffer(memory_manager, regs.offset_out, dst_size, &write_buffer);
UnswizzleSubrect(intermediate_buffer, tmp_read_buffer, bytes_per_pixel, src_width, src.height,
src.depth, src_x_offset, src.origin.y, x_elements, regs.line_count,
src.block_size.height, src.block_size.depth, pitch);
SwizzleSubrect(tmp_write_buffer, intermediate_buffer, bytes_per_pixel, dst_width, dst.height,
dst.depth, dst_x_offset, dst.origin.y, x_elements, regs.line_count,
dst.block_size.height, dst.block_size.depth, pitch);
}
void MaxwellDMA::ReleaseSemaphore() {
const auto type = regs.launch_dma.semaphore_type;
const GPUVAddr address = regs.semaphore.address;
const u32 payload = regs.semaphore.payload;
VideoCommon::QueryPropertiesFlags flags{VideoCommon::QueryPropertiesFlags::IsAFence};
switch (type) {
case LaunchDMA::SemaphoreType::NONE:
break;
case LaunchDMA::SemaphoreType::RELEASE_ONE_WORD_SEMAPHORE: {
rasterizer->Query(address, VideoCommon::QueryType::Payload, flags, payload, 0);
break;
}
case LaunchDMA::SemaphoreType::RELEASE_FOUR_WORD_SEMAPHORE: {
rasterizer->Query(address, VideoCommon::QueryType::Payload,
flags | VideoCommon::QueryPropertiesFlags::HasTimeout, payload, 0);
break;
}
default:
ASSERT_MSG(false, "Unknown semaphore type: {}", static_cast<u32>(type.Value()));
break;
}
}
} // namespace Tegra::Engines
|