diff options
Diffstat (limited to 'šola/la/kolokvij4.lyx')
-rw-r--r-- | šola/la/kolokvij4.lyx | 1068 |
1 files changed, 1068 insertions, 0 deletions
diff --git a/šola/la/kolokvij4.lyx b/šola/la/kolokvij4.lyx new file mode 100644 index 0000000..3e8a3e8 --- /dev/null +++ b/šola/la/kolokvij4.lyx @@ -0,0 +1,1068 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass article +\begin_preamble +\usepackage{siunitx} +\usepackage{pgfplots} +\usepackage{listings} +\usepackage{multicol} +\sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}} +\end_preamble +\use_default_options true +\begin_modules +enumitem +\end_modules +\maintain_unincluded_children false +\language slovene +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification false +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 1cm +\topmargin 2cm +\rightmargin 1cm +\bottommargin 2cm +\headheight 1cm +\headsep 1cm +\footskip 1cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style german +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +newcommand +\backslash +euler{e} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{multicols}{2} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Paragraph +Drobnarije od prej +\end_layout + +\begin_layout Standard +\begin_inset Formula $\det A=\det A^{T}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Vsota je direktna +\begin_inset Formula $\Leftrightarrow V\cap U=\left\{ 0\right\} $ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Skalarni produkt +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left\langle v,v\right\rangle >0$ +\end_inset + +, +\begin_inset Formula $\left\langle v,u\right\rangle =\overline{\left\langle u,v\right\rangle }$ +\end_inset + +, +\begin_inset Formula $\left\langle \alpha_{2}u_{1}+\alpha_{2}u_{2},v\right\rangle =\alpha_{1}\left\langle u_{1},v\right\rangle +\alpha_{2}\left\langle u_{2},v\right\rangle $ +\end_inset + +, +\begin_inset Formula $\left\langle u,\alpha_{1}v_{1}+\alpha_{2}v_{2}\right\rangle =\overline{\alpha_{1}}\left\langle u,v_{1}\right\rangle +\overline{\alpha_{2}}\left\langle u,v_{2}\right\rangle $ +\end_inset + + +\end_layout + +\begin_layout Standard +Standardni: +\begin_inset Formula $\left\langle \left(\alpha_{1},\dots,\alpha_{n}\right),\left(\beta_{1},\dots,\beta_{n}\right)\right\rangle =\alpha_{1}\overline{\beta_{1}}+\cdots\alpha_{n}\overline{\beta_{n}}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Norma: +\begin_inset Formula $\left|\left|v\right|\right|^{2}=\left\langle v,v\right\rangle $ +\end_inset + +: +\begin_inset Formula $\left|\left|v\right|\right|>0\Leftrightarrow v\not=0$ +\end_inset + +, +\begin_inset Formula $\left|\left|\alpha v\right|\right|=\left|\alpha\right|\left|\left|v\right|\right|$ +\end_inset + + +\end_layout + +\begin_layout Standard +Trikotniška neenakost: +\begin_inset Formula $\left|\left|u+v\right|\right|\leq\left|\left|u\right|\right|+\left|\left|v\right|\right|$ +\end_inset + + +\end_layout + +\begin_layout Standard +Cauchy-Schwarz: +\begin_inset Formula $\left|\left\langle u,v\right\rangle \right|\leq\left|\left|v\right|\right|\left|\left|u\right|\right|$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $v\perp u\Leftrightarrow\left\langle u,v\right\rangle =0$ +\end_inset + +. + +\begin_inset Formula $M$ +\end_inset + + ortog. + +\begin_inset Formula $\Leftrightarrow\forall u,v\in M:v\perp u\wedge v\not=0$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $M$ +\end_inset + + normirana +\begin_inset Formula $\Leftrightarrow\forall u\in M:\left|\left|u\right|\right|=1$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $M$ +\end_inset + + ortog. + +\begin_inset Formula $\Rightarrow M$ +\end_inset + + lin. + neod., Ortog. + baza +\begin_inset Formula $\sim$ +\end_inset + + ortog. + ogrodje +\end_layout + +\begin_layout Standard +\begin_inset Formula $v\perp M\Leftrightarrow\forall u\in M:v\perp u$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Fourierov razvoj +\end_layout + +\begin_layout Standard +\begin_inset Formula $v_{i}$ +\end_inset + + ortog. + baza za +\begin_inset Formula $V$ +\end_inset + +, +\begin_inset Formula $v\in V$ +\end_inset + + poljuben. + +\begin_inset Formula $v=\sum_{i=1}^{n}\frac{\left\langle v,v_{i}\right\rangle }{\left\langle v_{i},v_{i}\right\rangle }v_{i}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Parsevalova identiteta: +\begin_inset Formula $\left|\left|v\right|\right|^{2}=\sum_{i=1}^{n}\frac{\left|\left\langle v,v_{i}\right\rangle \right|^{2}}{\left\langle v_{i},v_{i}\right\rangle }$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Projekcija na podprostor +\end_layout + +\begin_layout Standard +let +\begin_inset Formula $V$ +\end_inset + + podprostor +\begin_inset Formula $W$ +\end_inset + +. + +\begin_inset Formula $v'$ +\end_inset + + je ortog. + proj vektorja +\begin_inset Formula $v$ +\end_inset + + +\begin_inset Formula $\Leftrightarrow\forall w\in W:\left|\left|v-v'\right|\right|\leq\left|\left|v-w\right|\right|\sim\text{v'}$ +\end_inset + + je najbližje +\begin_inset Formula $V$ +\end_inset + + izmed elementov +\begin_inset Formula $W$ +\end_inset + +. + +\begin_inset Formula $\sun$ +\end_inset + + Pitagora: +\end_layout + +\begin_layout Standard +Zadošča preveriti ortogonalnost +\begin_inset Formula $v-v'$ +\end_inset + + na vse elemente +\begin_inset Formula $W$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Formula za ort. + proj.: +\begin_inset Formula $v'=\sum_{i=0}^{n}\frac{\left\langle v,w_{i}\right\rangle }{\left\langle w_{i},w_{i}\right\rangle }$ +\end_inset + +, kjer je +\begin_inset Formula $w_{i}$ +\end_inset + + OB +\begin_inset Formula $W$ +\end_inset + +. +\end_layout + +\begin_layout Paragraph +Obstoj ortogonalne baze (Gram-Schmidt) +\end_layout + +\begin_layout Standard +let +\begin_inset Formula $\left\{ u_{1},\dots,u_{n}\right\} $ +\end_inset + + baza +\begin_inset Formula $V$ +\end_inset + +. + Zanj konstruiramo OB +\begin_inset Formula $\left\{ v_{1},\dots,v_{n}\right\} $ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $v_{1}=u_{1}$ +\end_inset + +, +\begin_inset Formula $v_{2}=u_{2}-\frac{\left\langle u_{2},v_{1}\right\rangle }{\left\langle v_{1},v_{1}\right\rangle }v_{1}$ +\end_inset + +, +\begin_inset Formula $v_{3}=u_{3}-\frac{\left\langle u_{3},v_{2}\right\rangle }{\left\langle v_{2},v_{2}\right\rangle }v_{2}-\frac{\left\langle u_{3},v_{1}\right\rangle }{\left\langle v_{1},v_{1}\right\rangle }v_{1}$ +\end_inset + +... + +\begin_inset Formula $v_{k}=u_{k}-\sum_{i=1}^{k-1}\frac{\text{\left\langle u_{k},v_{i}\right\rangle }}{\left\langle v_{i},v_{i}\right\rangle }v_{i}$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Ortogonalni komplement +\end_layout + +\begin_layout Standard +let +\begin_inset Formula $S\subseteq V$ +\end_inset + +. + +\begin_inset Formula $S^{\perp}=\left\{ v\in V;v\perp S\right\} $ +\end_inset + +. + Velja: +\begin_inset Formula $S^{\perp}$ +\end_inset + + podprostor +\begin_inset Formula $V$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $W$ +\end_inset + + podprostor +\begin_inset Formula $V$ +\end_inset + +. + Velja: +\begin_inset Formula $W\oplus W^{\perp}=V$ +\end_inset + + in +\begin_inset Formula $\left(W^{\perp}\right)^{\perp}=W$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Če je +\begin_inset Formula $\left\{ u_{1},\dots,u_{k}\right\} $ +\end_inset + + OB podprostora +\begin_inset Formula $V$ +\end_inset + +, je dopolnitev do baze vsega +\begin_inset Formula $V^{\perp}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Za vektorske podprostore +\begin_inset Formula $V_{i}$ +\end_inset + + VPSSP +\begin_inset Formula $W$ +\end_inset + + velja: +\end_layout + +\begin_layout Standard +\begin_inset Formula $S\subseteq W\Rightarrow\left(S^{\perp}\right)^{\perp}=\mathcal{L}in\left\{ S\right\} $ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $V_{1}\subseteq V_{2}\Rightarrow V_{2}^{\perp}\subseteq V_{1}^{\perp}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(V_{1}+v_{2}\right)^{\perp}=V_{1}^{\perp}\cup V_{2}^{\perp}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(V_{1}\cap V_{2}\right)^{\perp}=V_{1}^{\perp}+V_{2}^{\perp}$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Linearni funkcional +\end_layout + +\begin_layout Standard +je linearna preslikava +\begin_inset Formula $V\to F$ +\end_inset + +, če je +\begin_inset Formula $V$ +\end_inset + + nad poljem +\begin_inset Formula $F$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Rieszov izrek o reprezentaciji linearnih funkcionalov: +\begin_inset Formula $\forall\text{l.f.}\varphi:V\to F\exists!w\in V\ni:\forall v\in V:\varphi v=\left\langle v,w\right\rangle $ +\end_inset + + +\end_layout + +\begin_layout Standard +Za +\begin_inset Formula $L:U\to V$ +\end_inset + + je +\begin_inset Formula $L^{*}:V\to U$ +\end_inset + + adjungirana linearna preslika +\begin_inset Formula $\Leftrightarrow\forall u\in U,v\in V:\left\langle Lu,v\right\rangle =\left\langle v,L^{*}u\right\rangle $ +\end_inset + + +\end_layout + +\begin_layout Standard +Za std. + skal. + prod. + velja: +\begin_inset Formula $A^{*}=\overline{A}^{T}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(AB\right)^{*}=B^{*}A^{*}$ +\end_inset + +, +\begin_inset Formula $\left(L^{*}\right)_{B\leftarrow C}=\left(L_{C\leftarrow B}\right)^{*}$ +\end_inset + +, +\begin_inset Formula $\left(\alpha A+\beta B\right)^{*}=\overline{\alpha}A^{*}+\overline{\beta}B^{*}$ +\end_inset + +, +\begin_inset Formula $\left(A^{*}\right)^{*}=A$ +\end_inset + +, +\begin_inset Formula $\text{Ker}L^{*}=\left(\text{Im}L\right)^{\perp}$ +\end_inset + +, +\begin_inset Formula $\left(\text{Ker}L^{*}\right)^{\perp}=\text{Im}L$ +\end_inset + +, +\begin_inset Formula $\text{Ker}\left(L^{*}L\right)=\text{Ker}L$ +\end_inset + +, +\begin_inset Formula $\text{Im}\left(L^{*}L\right)=\text{Im}L$ +\end_inset + + +\end_layout + +\begin_layout Standard +Lastne vrednosti +\begin_inset Formula $A^{*}$ +\end_inset + + so konjugirane lastne vrednosti +\begin_inset Formula $A$ +\end_inset + +. + Dokaz: +\begin_inset Formula $B=A-\lambda I$ +\end_inset + +. + +\begin_inset Formula $B^{*}=A^{*}-\overline{\lambda}I$ +\end_inset + +. + +\begin_inset Formula $\det B^{*}=\det\overline{B}^{T}=\det B=\overline{\det B}$ +\end_inset + +, torej +\begin_inset Formula $\det B=0\Leftrightarrow\det B^{*}=0$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\Delta_{A^{*}}$ +\end_inset + + ima konjugirane koeficiente +\begin_inset Formula $\Delta_{A}$ +\end_inset + +. +\end_layout + +\begin_layout Paragraph +Normalne matrike +\begin_inset Formula $A^{*}A=AA^{*}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Velja: +\begin_inset Formula $A$ +\end_inset + + kvadratna, +\begin_inset Formula $Av=\lambda v\Leftrightarrow A^{*}v=\overline{\lambda}v$ +\end_inset + + (isti lastni vektorji) +\end_layout + +\begin_layout Standard +\begin_inset Formula $Au=\lambda u\wedge Av=\mu v\wedge\mu\not=\lambda\Rightarrow v\perp u$ +\end_inset + + +\end_layout + +\begin_layout Standard +Je podobna diagonalni: +\begin_inset Formula $\forall m:\text{Ker}\left(A-\lambda I\right)^{m}=\text{Ker}\left(A-\lambda I\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $A=PDP^{-1}\Leftrightarrow$ +\end_inset + + stolpci +\begin_inset Formula $P$ +\end_inset + + so ONB, diagonalci +\begin_inset Formula $D$ +\end_inset + + lavr, zdb +\begin_inset Formula $P$ +\end_inset + + je unitarna/ortogonalna. +\end_layout + +\begin_layout Paragraph +Unitarne +\begin_inset Formula $\mathbb{C}$ +\end_inset + +/ortogonalne +\begin_inset Formula $\mathbb{R}$ +\end_inset + + matrike +\begin_inset Formula $AA^{*}=A^{*}A=I$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $A$ +\end_inset + + kvadratna z ON stolpci. + +\begin_inset Formula $A$ +\end_inset + + ortog. + +\begin_inset Formula $\Rightarrow A$ +\end_inset + + normalna +\end_layout + +\begin_layout Standard +Lavr: let +\begin_inset Formula $Av=\lambda v\Rightarrow\left\langle Av,Av\right\rangle =\left\langle \lambda v,\lambda v\right\rangle =\left\langle v,v\right\rangle =\lambda\overline{\lambda}\left\langle v,v\right\rangle \Rightarrow\left|\lambda\right|=1\Rightarrow\lambda=e^{i\varphi}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $A=PDP^{-1},A^{*}=A^{-1}$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Simetrične +\begin_inset Formula $\mathbb{R}$ +\end_inset + +/hermitske +\begin_inset Formula $\mathbb{C}$ +\end_inset + + matrike +\begin_inset Formula $A=A^{*}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Sebiadjungirane linearne preslikave. +\end_layout + +\begin_layout Standard +Hermitska +\begin_inset Formula $\Rightarrow$ +\end_inset + + Normalna +\end_layout + +\begin_layout Standard +\begin_inset Formula $Av=\lambda v=A^{*}v=\overline{\lambda}v\Rightarrow\lambda\in\mathbb{R}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $A=A^{*}\Leftrightarrow\forall v:\left\langle Av,v\right\rangle \in\mathbb{R}$ +\end_inset + + +\end_layout + +\begin_layout Paragraph +Pozitivno (semi)definitne +\begin_inset Formula $A\geq0$ +\end_inset + + ( +\begin_inset Formula $>$ +\end_inset + + za PD) +\end_layout + +\begin_layout Standard +\begin_inset Formula $A$ +\end_inset + + P(S)D +\begin_inset Formula $\Rightarrow$ +\end_inset + + +\begin_inset Formula $A$ +\end_inset + + sim./ortog. + +\begin_inset Formula $\Rightarrow A$ +\end_inset + + normalna +\end_layout + +\begin_layout Standard +Def.: +\begin_inset Formula $A=A^{*}\wedge\forall v:\left\langle Av,v\right\rangle \geq0$ +\end_inset + + ( +\begin_inset Formula $>$ +\end_inset + + za PD) +\end_layout + +\begin_layout Standard +Za poljubno +\begin_inset Formula $B$ +\end_inset + + je +\begin_inset Formula $B^{*}B$ +\end_inset + + PSD. + Če ima +\begin_inset Formula $B$ +\end_inset + + LN stolpce, je +\begin_inset Formula $B^{*}B$ +\end_inset + + PD. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\forall\text{lavr}\lambda_{i}:A>0\Rightarrow\lambda_{i}>0$ +\end_inset + +, +\begin_inset Formula $A\geq0\Rightarrow\lambda_{i}\geq0$ +\end_inset + +. + Dokaz: let +\begin_inset Formula $A\geq0,v\not=0,Av=\lambda v\Rightarrow\left\langle Av,v\right\rangle =\left\langle \lambda v,v\right\rangle =\lambda\left\langle v,v\right\rangle \geq0\wedge\left\langle v,v\right\rangle >0\Rightarrow\lambda\geq0$ +\end_inset + + +\end_layout + +\begin_layout Standard +Lavr isto kot hermitska, lave isto kot normalna, diag. + isto kot normalna. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\text{A\ensuremath{\geq0}}\Rightarrow\exists B=B^{*},B\geq0\ni:B^{2}=A$ +\end_inset + +. + Dokaz: let +\begin_inset Formula $E\text{diag s koreni lavr}\geq0,A=PDP^{-1},P^{*}=P^{-1},D=\text{\text{diag z lavr}}\geq0,B=PEP^{-1}=PEP^{*}\Rightarrow B=B^{*}\Rightarrow B^{2}=PEP^{-1}PEP^{-1}=PE^{2}P^{-1}=PDP=A$ +\end_inset + + +\end_layout + +\begin_layout Standard +NTSE: +\begin_inset Formula $A\geq0\Leftrightarrow A=A^{*}\wedge\forall\lambda\text{lavr}A:\lambda\geq0\Leftrightarrow A=PDP^{-1}\wedge P\text{ unit.}\wedge\text{diag.}D\geq0\Leftrightarrow A=A^{*}\wedge\exists\sqrt{A}\ni:\sqrt{A}^{2}=A\Leftrightarrow A=B^{*}B$ +\end_inset + + (oz. + +\begin_inset Formula $>$ +\end_inset + + za PD) +\end_layout + +\begin_layout Standard +\begin_inset Formula $\forall\left[\cdot,\cdot\right]:V^{2}\to F\exists M>0\ni:\forall v,u\in V:\left[v,u\right]=\left\langle Au,v\right\rangle $ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\forall A>0:\left\langle A\cdot,\cdot\right\rangle $ +\end_inset + + je skalarni produkt. +\end_layout + +\begin_layout Paragraph +Singularni razcep (SVD) +\end_layout + +\begin_layout Standard +Singularne vrednosti +\begin_inset Formula $A$ +\end_inset + + so kvadratni koreni lastnih vrednosti +\begin_inset Formula $A^{*}A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Št. + ničelnih singvr +\begin_inset Formula $=\dim\text{Ker}\left(A^{*}A\right)=\dim\text{Ker}A$ +\end_inset + + +\end_layout + +\begin_layout Standard +Št. + nenič. + singvr +\begin_inset Formula $n\times n$ +\end_inset + + matrike +\begin_inset Formula $=n-\dim\text{Ker}A=\text{rang}A$ +\end_inset + + +\end_layout + +\begin_layout Standard +Za posplošeno diagonalno matriko +\begin_inset Formula $D$ +\end_inset + + velja +\begin_inset Formula $\forall i,j:i\not=j\Rightarrow D_{ij}=0$ +\end_inset + + +\end_layout + +\begin_layout Standard +Izred o SVD: +\begin_inset Formula $\forall A\in M_{m\times n}\left(\mathbb{C}\right)\exists\text{unit. }Q_{1},\text{unit. }Q_{2},\text{diag. }D\ni:A=Q_{1}DQ_{2}^{-1}=Q_{1}DQ_{2}^{*}$ +\end_inset + +. + Diagonalci +\begin_inset Formula $D$ +\end_inset + + so singvr +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $A^{*}=Q_{2}D^{*}Q_{1}^{*}$ +\end_inset + +, +\begin_inset Formula $A^{*}A=Q_{2}D^{*}DQ_{1}^{*}\sim D^{*}D$ +\end_inset + +. + Diagonalci +\begin_inset Formula $D^{*}D$ +\end_inset + + so lavr +\begin_inset Formula $A^{*}A$ +\end_inset + + in stolpci +\begin_inset Formula $Q_{2}$ +\end_inset + + so ONB lave +\begin_inset Formula $A^{*}A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Konstrukcija +\begin_inset Formula $Q_{2}$ +\end_inset + +: ONB iz pripadajočih ONB +\begin_inset Formula $A^{*}A$ +\end_inset + +. + +\begin_inset Formula $r=\text{rang}A$ +\end_inset + + +\end_layout + +\begin_layout Standard +Konstrukcija +\begin_inset Formula $Q_{1}$ +\end_inset + +: +\begin_inset Formula $\forall i\in\left\{ 1..r\right\} :u_{i}=\frac{1}{\sigma_{i}}Av_{i}$ +\end_inset + +. + +\begin_inset Formula $\left\{ u_{1},\dots,u_{r}\right\} $ +\end_inset + + dopolnimo do ONB, +\begin_inset Formula $Q_{1}=\left[\begin{array}{ccccc} +u_{1} & \cdots & u_{r} & \cdots & u_{m}\end{array}\right]$ +\end_inset + + unitarna (ONB stolpci) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{multicols} +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document |