summaryrefslogtreecommitdiffstats
path: root/šola/la/kolokvij4.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'šola/la/kolokvij4.lyx')
-rw-r--r--šola/la/kolokvij4.lyx1068
1 files changed, 1068 insertions, 0 deletions
diff --git a/šola/la/kolokvij4.lyx b/šola/la/kolokvij4.lyx
new file mode 100644
index 0000000..3e8a3e8
--- /dev/null
+++ b/šola/la/kolokvij4.lyx
@@ -0,0 +1,1068 @@
+#LyX 2.3 created this file. For more info see http://www.lyx.org/
+\lyxformat 544
+\begin_document
+\begin_header
+\save_transient_properties true
+\origin unavailable
+\textclass article
+\begin_preamble
+\usepackage{siunitx}
+\usepackage{pgfplots}
+\usepackage{listings}
+\usepackage{multicol}
+\sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}}
+\end_preamble
+\use_default_options true
+\begin_modules
+enumitem
+\end_modules
+\maintain_unincluded_children false
+\language slovene
+\language_package default
+\inputencoding auto
+\fontencoding global
+\font_roman "default" "default"
+\font_sans "default" "default"
+\font_typewriter "default" "default"
+\font_math "auto" "auto"
+\font_default_family default
+\use_non_tex_fonts false
+\font_sc false
+\font_osf false
+\font_sf_scale 100 100
+\font_tt_scale 100 100
+\use_microtype false
+\use_dash_ligatures true
+\graphics default
+\default_output_format default
+\output_sync 0
+\bibtex_command default
+\index_command default
+\paperfontsize default
+\spacing single
+\use_hyperref false
+\papersize default
+\use_geometry true
+\use_package amsmath 1
+\use_package amssymb 1
+\use_package cancel 1
+\use_package esint 1
+\use_package mathdots 1
+\use_package mathtools 1
+\use_package mhchem 1
+\use_package stackrel 1
+\use_package stmaryrd 1
+\use_package undertilde 1
+\cite_engine basic
+\cite_engine_type default
+\biblio_style plain
+\use_bibtopic false
+\use_indices false
+\paperorientation portrait
+\suppress_date false
+\justification false
+\use_refstyle 1
+\use_minted 0
+\index Index
+\shortcut idx
+\color #008000
+\end_index
+\leftmargin 1cm
+\topmargin 2cm
+\rightmargin 1cm
+\bottommargin 2cm
+\headheight 1cm
+\headsep 1cm
+\footskip 1cm
+\secnumdepth 3
+\tocdepth 3
+\paragraph_separation indent
+\paragraph_indentation default
+\is_math_indent 0
+\math_numbering_side default
+\quotes_style german
+\dynamic_quotes 0
+\papercolumns 1
+\papersides 1
+\paperpagestyle default
+\tracking_changes false
+\output_changes false
+\html_math_output 0
+\html_css_as_file 0
+\html_be_strict false
+\end_header
+
+\begin_body
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+newcommand
+\backslash
+euler{e}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+begin{multicols}{2}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Paragraph
+Drobnarije od prej
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $\det A=\det A^{T}$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Vsota je direktna
+\begin_inset Formula $\Leftrightarrow V\cap U=\left\{ 0\right\} $
+\end_inset
+
+
+\end_layout
+
+\begin_layout Paragraph
+Skalarni produkt
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $\left\langle v,v\right\rangle >0$
+\end_inset
+
+,
+\begin_inset Formula $\left\langle v,u\right\rangle =\overline{\left\langle u,v\right\rangle }$
+\end_inset
+
+,
+\begin_inset Formula $\left\langle \alpha_{2}u_{1}+\alpha_{2}u_{2},v\right\rangle =\alpha_{1}\left\langle u_{1},v\right\rangle +\alpha_{2}\left\langle u_{2},v\right\rangle $
+\end_inset
+
+,
+\begin_inset Formula $\left\langle u,\alpha_{1}v_{1}+\alpha_{2}v_{2}\right\rangle =\overline{\alpha_{1}}\left\langle u,v_{1}\right\rangle +\overline{\alpha_{2}}\left\langle u,v_{2}\right\rangle $
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Standardni:
+\begin_inset Formula $\left\langle \left(\alpha_{1},\dots,\alpha_{n}\right),\left(\beta_{1},\dots,\beta_{n}\right)\right\rangle =\alpha_{1}\overline{\beta_{1}}+\cdots\alpha_{n}\overline{\beta_{n}}$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Norma:
+\begin_inset Formula $\left|\left|v\right|\right|^{2}=\left\langle v,v\right\rangle $
+\end_inset
+
+:
+\begin_inset Formula $\left|\left|v\right|\right|>0\Leftrightarrow v\not=0$
+\end_inset
+
+,
+\begin_inset Formula $\left|\left|\alpha v\right|\right|=\left|\alpha\right|\left|\left|v\right|\right|$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Trikotniška neenakost:
+\begin_inset Formula $\left|\left|u+v\right|\right|\leq\left|\left|u\right|\right|+\left|\left|v\right|\right|$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Cauchy-Schwarz:
+\begin_inset Formula $\left|\left\langle u,v\right\rangle \right|\leq\left|\left|v\right|\right|\left|\left|u\right|\right|$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $v\perp u\Leftrightarrow\left\langle u,v\right\rangle =0$
+\end_inset
+
+.
+
+\begin_inset Formula $M$
+\end_inset
+
+ ortog.
+
+\begin_inset Formula $\Leftrightarrow\forall u,v\in M:v\perp u\wedge v\not=0$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $M$
+\end_inset
+
+ normirana
+\begin_inset Formula $\Leftrightarrow\forall u\in M:\left|\left|u\right|\right|=1$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $M$
+\end_inset
+
+ ortog.
+
+\begin_inset Formula $\Rightarrow M$
+\end_inset
+
+ lin.
+ neod., Ortog.
+ baza
+\begin_inset Formula $\sim$
+\end_inset
+
+ ortog.
+ ogrodje
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $v\perp M\Leftrightarrow\forall u\in M:v\perp u$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Paragraph
+Fourierov razvoj
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $v_{i}$
+\end_inset
+
+ ortog.
+ baza za
+\begin_inset Formula $V$
+\end_inset
+
+,
+\begin_inset Formula $v\in V$
+\end_inset
+
+ poljuben.
+
+\begin_inset Formula $v=\sum_{i=1}^{n}\frac{\left\langle v,v_{i}\right\rangle }{\left\langle v_{i},v_{i}\right\rangle }v_{i}$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Parsevalova identiteta:
+\begin_inset Formula $\left|\left|v\right|\right|^{2}=\sum_{i=1}^{n}\frac{\left|\left\langle v,v_{i}\right\rangle \right|^{2}}{\left\langle v_{i},v_{i}\right\rangle }$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Paragraph
+Projekcija na podprostor
+\end_layout
+
+\begin_layout Standard
+let
+\begin_inset Formula $V$
+\end_inset
+
+ podprostor
+\begin_inset Formula $W$
+\end_inset
+
+.
+
+\begin_inset Formula $v'$
+\end_inset
+
+ je ortog.
+ proj vektorja
+\begin_inset Formula $v$
+\end_inset
+
+
+\begin_inset Formula $\Leftrightarrow\forall w\in W:\left|\left|v-v'\right|\right|\leq\left|\left|v-w\right|\right|\sim\text{v'}$
+\end_inset
+
+ je najbližje
+\begin_inset Formula $V$
+\end_inset
+
+ izmed elementov
+\begin_inset Formula $W$
+\end_inset
+
+.
+
+\begin_inset Formula $\sun$
+\end_inset
+
+ Pitagora:
+\end_layout
+
+\begin_layout Standard
+Zadošča preveriti ortogonalnost
+\begin_inset Formula $v-v'$
+\end_inset
+
+ na vse elemente
+\begin_inset Formula $W$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Formula za ort.
+ proj.:
+\begin_inset Formula $v'=\sum_{i=0}^{n}\frac{\left\langle v,w_{i}\right\rangle }{\left\langle w_{i},w_{i}\right\rangle }$
+\end_inset
+
+, kjer je
+\begin_inset Formula $w_{i}$
+\end_inset
+
+ OB
+\begin_inset Formula $W$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Paragraph
+Obstoj ortogonalne baze (Gram-Schmidt)
+\end_layout
+
+\begin_layout Standard
+let
+\begin_inset Formula $\left\{ u_{1},\dots,u_{n}\right\} $
+\end_inset
+
+ baza
+\begin_inset Formula $V$
+\end_inset
+
+.
+ Zanj konstruiramo OB
+\begin_inset Formula $\left\{ v_{1},\dots,v_{n}\right\} $
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $v_{1}=u_{1}$
+\end_inset
+
+,
+\begin_inset Formula $v_{2}=u_{2}-\frac{\left\langle u_{2},v_{1}\right\rangle }{\left\langle v_{1},v_{1}\right\rangle }v_{1}$
+\end_inset
+
+,
+\begin_inset Formula $v_{3}=u_{3}-\frac{\left\langle u_{3},v_{2}\right\rangle }{\left\langle v_{2},v_{2}\right\rangle }v_{2}-\frac{\left\langle u_{3},v_{1}\right\rangle }{\left\langle v_{1},v_{1}\right\rangle }v_{1}$
+\end_inset
+
+...
+
+\begin_inset Formula $v_{k}=u_{k}-\sum_{i=1}^{k-1}\frac{\text{\left\langle u_{k},v_{i}\right\rangle }}{\left\langle v_{i},v_{i}\right\rangle }v_{i}$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Paragraph
+Ortogonalni komplement
+\end_layout
+
+\begin_layout Standard
+let
+\begin_inset Formula $S\subseteq V$
+\end_inset
+
+.
+
+\begin_inset Formula $S^{\perp}=\left\{ v\in V;v\perp S\right\} $
+\end_inset
+
+.
+ Velja:
+\begin_inset Formula $S^{\perp}$
+\end_inset
+
+ podprostor
+\begin_inset Formula $V$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $W$
+\end_inset
+
+ podprostor
+\begin_inset Formula $V$
+\end_inset
+
+.
+ Velja:
+\begin_inset Formula $W\oplus W^{\perp}=V$
+\end_inset
+
+ in
+\begin_inset Formula $\left(W^{\perp}\right)^{\perp}=W$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Če je
+\begin_inset Formula $\left\{ u_{1},\dots,u_{k}\right\} $
+\end_inset
+
+ OB podprostora
+\begin_inset Formula $V$
+\end_inset
+
+, je dopolnitev do baze vsega
+\begin_inset Formula $V^{\perp}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Za vektorske podprostore
+\begin_inset Formula $V_{i}$
+\end_inset
+
+ VPSSP
+\begin_inset Formula $W$
+\end_inset
+
+ velja:
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $S\subseteq W\Rightarrow\left(S^{\perp}\right)^{\perp}=\mathcal{L}in\left\{ S\right\} $
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $V_{1}\subseteq V_{2}\Rightarrow V_{2}^{\perp}\subseteq V_{1}^{\perp}$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $\left(V_{1}+v_{2}\right)^{\perp}=V_{1}^{\perp}\cup V_{2}^{\perp}$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $\left(V_{1}\cap V_{2}\right)^{\perp}=V_{1}^{\perp}+V_{2}^{\perp}$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Paragraph
+Linearni funkcional
+\end_layout
+
+\begin_layout Standard
+je linearna preslikava
+\begin_inset Formula $V\to F$
+\end_inset
+
+, če je
+\begin_inset Formula $V$
+\end_inset
+
+ nad poljem
+\begin_inset Formula $F$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Rieszov izrek o reprezentaciji linearnih funkcionalov:
+\begin_inset Formula $\forall\text{l.f.}\varphi:V\to F\exists!w\in V\ni:\forall v\in V:\varphi v=\left\langle v,w\right\rangle $
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Za
+\begin_inset Formula $L:U\to V$
+\end_inset
+
+ je
+\begin_inset Formula $L^{*}:V\to U$
+\end_inset
+
+ adjungirana linearna preslika
+\begin_inset Formula $\Leftrightarrow\forall u\in U,v\in V:\left\langle Lu,v\right\rangle =\left\langle v,L^{*}u\right\rangle $
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Za std.
+ skal.
+ prod.
+ velja:
+\begin_inset Formula $A^{*}=\overline{A}^{T}$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $\left(AB\right)^{*}=B^{*}A^{*}$
+\end_inset
+
+,
+\begin_inset Formula $\left(L^{*}\right)_{B\leftarrow C}=\left(L_{C\leftarrow B}\right)^{*}$
+\end_inset
+
+,
+\begin_inset Formula $\left(\alpha A+\beta B\right)^{*}=\overline{\alpha}A^{*}+\overline{\beta}B^{*}$
+\end_inset
+
+,
+\begin_inset Formula $\left(A^{*}\right)^{*}=A$
+\end_inset
+
+,
+\begin_inset Formula $\text{Ker}L^{*}=\left(\text{Im}L\right)^{\perp}$
+\end_inset
+
+,
+\begin_inset Formula $\left(\text{Ker}L^{*}\right)^{\perp}=\text{Im}L$
+\end_inset
+
+,
+\begin_inset Formula $\text{Ker}\left(L^{*}L\right)=\text{Ker}L$
+\end_inset
+
+,
+\begin_inset Formula $\text{Im}\left(L^{*}L\right)=\text{Im}L$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Lastne vrednosti
+\begin_inset Formula $A^{*}$
+\end_inset
+
+ so konjugirane lastne vrednosti
+\begin_inset Formula $A$
+\end_inset
+
+.
+ Dokaz:
+\begin_inset Formula $B=A-\lambda I$
+\end_inset
+
+.
+
+\begin_inset Formula $B^{*}=A^{*}-\overline{\lambda}I$
+\end_inset
+
+.
+
+\begin_inset Formula $\det B^{*}=\det\overline{B}^{T}=\det B=\overline{\det B}$
+\end_inset
+
+, torej
+\begin_inset Formula $\det B=0\Leftrightarrow\det B^{*}=0$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $\Delta_{A^{*}}$
+\end_inset
+
+ ima konjugirane koeficiente
+\begin_inset Formula $\Delta_{A}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Paragraph
+Normalne matrike
+\begin_inset Formula $A^{*}A=AA^{*}$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Velja:
+\begin_inset Formula $A$
+\end_inset
+
+ kvadratna,
+\begin_inset Formula $Av=\lambda v\Leftrightarrow A^{*}v=\overline{\lambda}v$
+\end_inset
+
+ (isti lastni vektorji)
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $Au=\lambda u\wedge Av=\mu v\wedge\mu\not=\lambda\Rightarrow v\perp u$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Je podobna diagonalni:
+\begin_inset Formula $\forall m:\text{Ker}\left(A-\lambda I\right)^{m}=\text{Ker}\left(A-\lambda I\right)$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $A=PDP^{-1}\Leftrightarrow$
+\end_inset
+
+ stolpci
+\begin_inset Formula $P$
+\end_inset
+
+ so ONB, diagonalci
+\begin_inset Formula $D$
+\end_inset
+
+ lavr, zdb
+\begin_inset Formula $P$
+\end_inset
+
+ je unitarna/ortogonalna.
+\end_layout
+
+\begin_layout Paragraph
+Unitarne
+\begin_inset Formula $\mathbb{C}$
+\end_inset
+
+/ortogonalne
+\begin_inset Formula $\mathbb{R}$
+\end_inset
+
+ matrike
+\begin_inset Formula $AA^{*}=A^{*}A=I$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $A$
+\end_inset
+
+ kvadratna z ON stolpci.
+
+\begin_inset Formula $A$
+\end_inset
+
+ ortog.
+
+\begin_inset Formula $\Rightarrow A$
+\end_inset
+
+ normalna
+\end_layout
+
+\begin_layout Standard
+Lavr: let
+\begin_inset Formula $Av=\lambda v\Rightarrow\left\langle Av,Av\right\rangle =\left\langle \lambda v,\lambda v\right\rangle =\left\langle v,v\right\rangle =\lambda\overline{\lambda}\left\langle v,v\right\rangle \Rightarrow\left|\lambda\right|=1\Rightarrow\lambda=e^{i\varphi}$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $A=PDP^{-1},A^{*}=A^{-1}$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Paragraph
+Simetrične
+\begin_inset Formula $\mathbb{R}$
+\end_inset
+
+/hermitske
+\begin_inset Formula $\mathbb{C}$
+\end_inset
+
+ matrike
+\begin_inset Formula $A=A^{*}$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Sebiadjungirane linearne preslikave.
+\end_layout
+
+\begin_layout Standard
+Hermitska
+\begin_inset Formula $\Rightarrow$
+\end_inset
+
+ Normalna
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $Av=\lambda v=A^{*}v=\overline{\lambda}v\Rightarrow\lambda\in\mathbb{R}$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $A=A^{*}\Leftrightarrow\forall v:\left\langle Av,v\right\rangle \in\mathbb{R}$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Paragraph
+Pozitivno (semi)definitne
+\begin_inset Formula $A\geq0$
+\end_inset
+
+ (
+\begin_inset Formula $>$
+\end_inset
+
+ za PD)
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $A$
+\end_inset
+
+ P(S)D
+\begin_inset Formula $\Rightarrow$
+\end_inset
+
+
+\begin_inset Formula $A$
+\end_inset
+
+ sim./ortog.
+
+\begin_inset Formula $\Rightarrow A$
+\end_inset
+
+ normalna
+\end_layout
+
+\begin_layout Standard
+Def.:
+\begin_inset Formula $A=A^{*}\wedge\forall v:\left\langle Av,v\right\rangle \geq0$
+\end_inset
+
+ (
+\begin_inset Formula $>$
+\end_inset
+
+ za PD)
+\end_layout
+
+\begin_layout Standard
+Za poljubno
+\begin_inset Formula $B$
+\end_inset
+
+ je
+\begin_inset Formula $B^{*}B$
+\end_inset
+
+ PSD.
+ Če ima
+\begin_inset Formula $B$
+\end_inset
+
+ LN stolpce, je
+\begin_inset Formula $B^{*}B$
+\end_inset
+
+ PD.
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $\forall\text{lavr}\lambda_{i}:A>0\Rightarrow\lambda_{i}>0$
+\end_inset
+
+,
+\begin_inset Formula $A\geq0\Rightarrow\lambda_{i}\geq0$
+\end_inset
+
+.
+ Dokaz: let
+\begin_inset Formula $A\geq0,v\not=0,Av=\lambda v\Rightarrow\left\langle Av,v\right\rangle =\left\langle \lambda v,v\right\rangle =\lambda\left\langle v,v\right\rangle \geq0\wedge\left\langle v,v\right\rangle >0\Rightarrow\lambda\geq0$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Lavr isto kot hermitska, lave isto kot normalna, diag.
+ isto kot normalna.
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $\text{A\ensuremath{\geq0}}\Rightarrow\exists B=B^{*},B\geq0\ni:B^{2}=A$
+\end_inset
+
+.
+ Dokaz: let
+\begin_inset Formula $E\text{diag s koreni lavr}\geq0,A=PDP^{-1},P^{*}=P^{-1},D=\text{\text{diag z lavr}}\geq0,B=PEP^{-1}=PEP^{*}\Rightarrow B=B^{*}\Rightarrow B^{2}=PEP^{-1}PEP^{-1}=PE^{2}P^{-1}=PDP=A$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+NTSE:
+\begin_inset Formula $A\geq0\Leftrightarrow A=A^{*}\wedge\forall\lambda\text{lavr}A:\lambda\geq0\Leftrightarrow A=PDP^{-1}\wedge P\text{ unit.}\wedge\text{diag.}D\geq0\Leftrightarrow A=A^{*}\wedge\exists\sqrt{A}\ni:\sqrt{A}^{2}=A\Leftrightarrow A=B^{*}B$
+\end_inset
+
+ (oz.
+
+\begin_inset Formula $>$
+\end_inset
+
+ za PD)
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $\forall\left[\cdot,\cdot\right]:V^{2}\to F\exists M>0\ni:\forall v,u\in V:\left[v,u\right]=\left\langle Au,v\right\rangle $
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $\forall A>0:\left\langle A\cdot,\cdot\right\rangle $
+\end_inset
+
+ je skalarni produkt.
+\end_layout
+
+\begin_layout Paragraph
+Singularni razcep (SVD)
+\end_layout
+
+\begin_layout Standard
+Singularne vrednosti
+\begin_inset Formula $A$
+\end_inset
+
+ so kvadratni koreni lastnih vrednosti
+\begin_inset Formula $A^{*}A$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Št.
+ ničelnih singvr
+\begin_inset Formula $=\dim\text{Ker}\left(A^{*}A\right)=\dim\text{Ker}A$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Št.
+ nenič.
+ singvr
+\begin_inset Formula $n\times n$
+\end_inset
+
+ matrike
+\begin_inset Formula $=n-\dim\text{Ker}A=\text{rang}A$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Za posplošeno diagonalno matriko
+\begin_inset Formula $D$
+\end_inset
+
+ velja
+\begin_inset Formula $\forall i,j:i\not=j\Rightarrow D_{ij}=0$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Izred o SVD:
+\begin_inset Formula $\forall A\in M_{m\times n}\left(\mathbb{C}\right)\exists\text{unit. }Q_{1},\text{unit. }Q_{2},\text{diag. }D\ni:A=Q_{1}DQ_{2}^{-1}=Q_{1}DQ_{2}^{*}$
+\end_inset
+
+.
+ Diagonalci
+\begin_inset Formula $D$
+\end_inset
+
+ so singvr
+\begin_inset Formula $A$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $A^{*}=Q_{2}D^{*}Q_{1}^{*}$
+\end_inset
+
+,
+\begin_inset Formula $A^{*}A=Q_{2}D^{*}DQ_{1}^{*}\sim D^{*}D$
+\end_inset
+
+.
+ Diagonalci
+\begin_inset Formula $D^{*}D$
+\end_inset
+
+ so lavr
+\begin_inset Formula $A^{*}A$
+\end_inset
+
+ in stolpci
+\begin_inset Formula $Q_{2}$
+\end_inset
+
+ so ONB lave
+\begin_inset Formula $A^{*}A$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Konstrukcija
+\begin_inset Formula $Q_{2}$
+\end_inset
+
+: ONB iz pripadajočih ONB
+\begin_inset Formula $A^{*}A$
+\end_inset
+
+.
+
+\begin_inset Formula $r=\text{rang}A$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Konstrukcija
+\begin_inset Formula $Q_{1}$
+\end_inset
+
+:
+\begin_inset Formula $\forall i\in\left\{ 1..r\right\} :u_{i}=\frac{1}{\sigma_{i}}Av_{i}$
+\end_inset
+
+.
+
+\begin_inset Formula $\left\{ u_{1},\dots,u_{r}\right\} $
+\end_inset
+
+ dopolnimo do ONB,
+\begin_inset Formula $Q_{1}=\left[\begin{array}{ccccc}
+u_{1} & \cdots & u_{r} & \cdots & u_{m}\end{array}\right]$
+\end_inset
+
+ unitarna (ONB stolpci)
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{multicols}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\end_body
+\end_document