summaryrefslogtreecommitdiffstats
path: root/src/shader_recompiler/ir_opt/constant_propagation_pass.cpp
blob: 02f5b653d456381a248742a6b3ccbf88427f8902 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <type_traits>

#include "common/bit_util.h"
#include "shader_recompiler/exception.h"
#include "shader_recompiler/frontend/ir/microinstruction.h"
#include "shader_recompiler/ir_opt/passes.h"

namespace Shader::Optimization {
namespace {
[[nodiscard]] u32 BitFieldUExtract(u32 base, u32 shift, u32 count) {
    if (static_cast<size_t>(shift) + static_cast<size_t>(count) > Common::BitSize<u32>()) {
        throw LogicError("Undefined result in BitFieldUExtract({}, {}, {})", base, shift, count);
    }
    return (base >> shift) & ((1U << count) - 1);
}

template <typename T>
[[nodiscard]] T Arg(const IR::Value& value) {
    if constexpr (std::is_same_v<T, bool>) {
        return value.U1();
    } else if constexpr (std::is_same_v<T, u32>) {
        return value.U32();
    } else if constexpr (std::is_same_v<T, u64>) {
        return value.U64();
    }
}

template <typename ImmFn>
bool FoldCommutative(IR::Inst& inst, ImmFn&& imm_fn) {
    const auto arg = [](const IR::Value& value) {
        if constexpr (std::is_invocable_r_v<bool, ImmFn, bool, bool>) {
            return value.U1();
        } else if constexpr (std::is_invocable_r_v<u32, ImmFn, u32, u32>) {
            return value.U32();
        } else if constexpr (std::is_invocable_r_v<u64, ImmFn, u64, u64>) {
            return value.U64();
        }
    };
    const IR::Value lhs{inst.Arg(0)};
    const IR::Value rhs{inst.Arg(1)};

    const bool is_lhs_immediate{lhs.IsImmediate()};
    const bool is_rhs_immediate{rhs.IsImmediate()};

    if (is_lhs_immediate && is_rhs_immediate) {
        const auto result{imm_fn(arg(lhs), arg(rhs))};
        inst.ReplaceUsesWith(IR::Value{result});
        return false;
    }
    if (is_lhs_immediate && !is_rhs_immediate) {
        IR::Inst* const rhs_inst{rhs.InstRecursive()};
        if (rhs_inst->Opcode() == inst.Opcode() && rhs_inst->Arg(1).IsImmediate()) {
            const auto combined{imm_fn(arg(lhs), arg(rhs_inst->Arg(1)))};
            inst.SetArg(0, rhs_inst->Arg(0));
            inst.SetArg(1, IR::Value{combined});
        } else {
            // Normalize
            inst.SetArg(0, rhs);
            inst.SetArg(1, lhs);
        }
    }
    if (!is_lhs_immediate && is_rhs_immediate) {
        const IR::Inst* const lhs_inst{lhs.InstRecursive()};
        if (lhs_inst->Opcode() == inst.Opcode() && lhs_inst->Arg(1).IsImmediate()) {
            const auto combined{imm_fn(arg(rhs), arg(lhs_inst->Arg(1)))};
            inst.SetArg(0, lhs_inst->Arg(0));
            inst.SetArg(1, IR::Value{combined});
        }
    }
    return true;
}

void FoldGetRegister(IR::Inst& inst) {
    if (inst.Arg(0).Reg() == IR::Reg::RZ) {
        inst.ReplaceUsesWith(IR::Value{u32{0}});
    }
}

void FoldGetPred(IR::Inst& inst) {
    if (inst.Arg(0).Pred() == IR::Pred::PT) {
        inst.ReplaceUsesWith(IR::Value{true});
    }
}

template <typename T>
void FoldAdd(IR::Inst& inst) {
    if (inst.HasAssociatedPseudoOperation()) {
        return;
    }
    if (!FoldCommutative(inst, [](T a, T b) { return a + b; })) {
        return;
    }
    const IR::Value rhs{inst.Arg(1)};
    if (rhs.IsImmediate() && Arg<T>(rhs) == 0) {
        inst.ReplaceUsesWith(inst.Arg(0));
    }
}

void FoldLogicalAnd(IR::Inst& inst) {
    if (!FoldCommutative(inst, [](bool a, bool b) { return a && b; })) {
        return;
    }
    const IR::Value rhs{inst.Arg(1)};
    if (rhs.IsImmediate()) {
        if (rhs.U1()) {
            inst.ReplaceUsesWith(inst.Arg(0));
        } else {
            inst.ReplaceUsesWith(IR::Value{false});
        }
    }
}

void ConstantPropagation(IR::Inst& inst) {
    switch (inst.Opcode()) {
    case IR::Opcode::GetRegister:
        return FoldGetRegister(inst);
    case IR::Opcode::GetPred:
        return FoldGetPred(inst);
    case IR::Opcode::IAdd32:
        return FoldAdd<u32>(inst);
    case IR::Opcode::IAdd64:
        return FoldAdd<u64>(inst);
    case IR::Opcode::BitFieldUExtract:
        if (inst.AreAllArgsImmediates() && !inst.HasAssociatedPseudoOperation()) {
            inst.ReplaceUsesWith(IR::Value{
                BitFieldUExtract(inst.Arg(0).U32(), inst.Arg(1).U32(), inst.Arg(2).U32())});
        }
        break;
    case IR::Opcode::LogicalAnd:
        return FoldLogicalAnd(inst);
    default:
        break;
    }
}
} // Anonymous namespace

void ConstantPropagationPass(IR::Block& block) {
    std::ranges::for_each(block, ConstantPropagation);
}

} // namespace Shader::Optimization